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ABSTRACT

Upper and lower bounds are established for the maximum length of a
chain of subgroups in a finite classical linear group. Also, it is proved
that, for each prime p, all but finitely many finite Lie type groups in
characteristic p have a longest chain which passes through a maximal

parabolic.

1. Introduction

There are a number of ways for one to measure the “size” of a finite group G (the
order of G being the most obvious). Peter Cameron has suggested that for many
purposes, the most indicative measure is the length of G, which is defined as
follows: If G is a finite group, £(G) is the length of a longest strictly descending
chain of subgroups in G. This work is concerned with chains of subgroups in
classical groups. We obtain the following bounds on the lengths of classical
linear groups:
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THEOREM 5.1: Let G = I(n,q) be a classical matrix group with minimal field
of definition F, where ¢ = p™, ¢ > 11. Suppose further that G is a split BN-pair
of rank r(G) with B=UH = Ng(U), U € Syl,(G) and H a Cartan subgroup of
G. Then one of the following holds:

(i) r(G) +log,(1U]) + (| H]) < (G) < r(G) + log, (U]) + logy(|H)

or

(ii) E(G) € {SUz(p), Q(p), Sp4(p), 2 (p),25(p)} for p a Mersenne prime.

Theorem 5.1 is obtained as a corollary of the following result which provides a
minimal list of “unavoidable” longest subgroups of classical linear groups. Here

a maximal subgroup M is called a longest subgroup of G if {(G) = £(M) + 1.

THEOREM 1.1: Let G = G(p™) be a classical linear group with natural module
V of dimension n over F = F,, ¢ = p™, m € {m,2m}. Suppose that Go <1 G
with Gg quasisimple and assume that G does not induce a graph automorphism
of Gg if Gy Is of type SL,,. Then there exists a maximal subgroup M of G with
(M) + 1 = £(G) satisfying one of the following:

(1) M = Ng(M,), where My is a maximal parabolic subgroup of Gg; or

(2) G stabilizes a non-degenerate form on V, V. = Vi L V, and M =
Stabg ({V4, Vo}). Furthermore, if dim(V;) = n; and G is orthogonal, then
no is even and, if n is odd, then n; = 1; or

(3) K is a field extension of F with (K: F) = r, where r is the smallest prime
divisor of n, and M Is the stabilizer in G of a K-linear structure on V.
Moreover, either

(i} G is of type SLym, (r prime) or SU,, (r prime, rm odd) and F*(M)
is of type SL,, or SU,, respectively with m > 1, or
(if) G is of type Spy, or Oy, and F*(M) is of type Sp,, or Og,, or
(iii) G is of type Spy, or O, (s odd) and F*(M) is of type SUs;

(4) G is of type O, [G: M] = 2 and G = (M,~) where v induces a graph
automorphism of order 2 on M(®). Moreover, My < M with M, the
normalizer in M of a maximal totally isotropic subspace of V and ¢(M) =
(M) +1; or

(6) G is of type SLa(p), p € {5,7,11,19,29}.

Our other application of Theorem 1.1 requires some definitions.

Definition 1.2: Let G be any finite group of Lie type with Q = E(G) quasisimple.
The parabolic length of G, denoted by £,(G), is defined to be max{¢(P) + 1},
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where P ranges over all parabolic subgroups of G. If £(Q) = £,(2) we will say
that G has parabolic length for every @ < G < T (see below). Otherwise, we say
that G has hyperbolic length (Our definition for groups of parabolic length
differs slightly from that in [2].)

Remark: According to Definition 1.2, G has parabolic length if and only if G
contains a longest subgroup M of type (1) or (4) in Theorem 1.1.

In [25] it is shown that for any fixed prime p, there exists a number F(p) such
that any quasisimple Lie type group in characteristic p whose minimal field of
definition has cardinality at least p¥ ) must have parabolic length. Alternatively,
quasisimple groups of hyperbolic length in characteristic p only occur over fields
of cardinality smaller that pf(®). By itself, this does not imply that there are
only finitely many quasisimple groups of hyperbolic length. However, Theorem
1.1 permits us to establish a bound on the length of groups of hyperbolic length,
which in turn easily yields

THEOREM 4.4: For each prime p, there are only finitely many (possibly 0) finite
Lie type groups G in characteristic p with G of hyperbolic length.

2. Preliminaries

For the most part, our notation will be consistent with the notation found in
[15]. Indeed, the results therein are critical to our analysis.

Let (V, f) be a n-dimensional vector space over the field of g elements together
with an associated form f (possibly trivial). We shall refer to G as a classical
matrix group if G is a subgroup of the full isometry group of (V, f), and will
sometimes write G = Z(n, ¢).

We let Q denote any of the groups

SL(V),SU(V),Sp(V), (V), 2*(V), 2~ (V),
and I" any of the groups
TL(V),TU(V),T'Sp(V),[O(V),TO*(V),T[O~ (V).
For our purposes, a group G is said to be classical linear if

Q<G<T
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where X denotes reduction of X modulo a group of scalars.

In addition, we will refer to G as being of type L, U, S, O¢ with € € {o,+, -}
according to whether € is respectively SL(V'), SU(V), Sp(V), Q¢(V) (here O°
denotes an odd dimensional orthogonal group).

For small values of p, the precise list of Lie type groups of hyperbolic length in
characteristic p may be obtained and indeed this has been done independently of
our main theorem in [24] and [5] for p < 29. Thus in this paper we may assume

the following:

LEMMA 2.1: p > 31.
Certain other general results of Brozovic play a critical role in the proof.
Throughout the ensuing discussion we shall assume the following:

(x) G = G(q) is a finite quasisimple group of Lie type defined over F = F,
¢q=p",p>3l. G=MyDM=M; DM D -- DM, ={e} is a strictly
descending chain of subgroups in G with £(G) =r (so {(G) = ¢(M) + 1).

THEOREM 2.2: We may choose M so that either F*(M) # F(M) or M =
N¢(T) for T some non-split maximal torus of G.

Proof: This follows from Theorem 5.1 of [4]. |

THEOREM 2.3: If F*(M) # F(M) and L is a quasisimple subnormal subgroup
of M, then either
(a) L = L(q') is a finite quasisimple group of Lie type defined over Fy, ¢' = ™
or
(b) G/Z(G) = La(p) and MZ(G)/Z(G) = As.
Moreover in case (b), (M) = £(Ng(T)) for T some maximal torus of G.

Proof: This follows from the main theorems of [2] and [3]. |
Note that since T is solvable, (T) = Q(|T'|) where Q(n) is defined as follows:

Definition 2.4: Let n = p*---p2 be the prime factorization of the positive
integer n. Then
Qn)=a1+---+ a,.

The following properties of the function £}(n) are evident.

PROPOSITION 2.5:
(a) Qn-m)=Q(n)+ Q(m);
(b) Q(n) < logy(n) for alln > 1.
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THEOREM 2.6: Suppose L; is a subnormal subgroup of M; (0 <1i < r) with L;
a quasisimple group of Lie type in characteristic p. If L; has parabolic length, so
does G.

Proof: If i = 0, then L = E(G) and this follows from the definition of parabolic
length. If ¢ > 0, this follows by induction from the main theorem of [2]. |

Henceforth we assume the following:
(3x) Hypothesis (x) holds and G is a counterexample to Theorem 1.1 such that
if M* is a maximal subgroup of G, then Theorem 1.1 holds in every section
of M*.
Combining the above theorems we obtain the following result:

PROPOSITION 2.7: We may assume the following:

(a) F*(M) # F(M).

(b) If L; is a quasisimple subnormal subgroup of M;, 1 < i < r, then L; is a
group of Lie type in characteristic p and L; has hyperbolic length.

(c) If L; is a quasisimple subnormal subgroup of M;, 1 < i <r, and L; is a
classical linear group, then L; has a maximal subgroup K; with £(L;) =
¢(K;) + 1 and with the pair (L;, K;) satisfying conclusion (2) or (3) of
Theorem 1.1.

Proof: If F*(M) = F(M), then by Theorem 2.3, M = Ng(T) for T a non-split
maximal torus of G. Then by Theorem 1 of [1], G has type SL.(q) or SU,(g) with
r prime and T is a Coxeter torus in G. But then conclusion (3) of Theorem 1.1
holds, contrary to assumption. Thus (a) is valid. Part (b) follows by induction
from Theorems 2.3 and 2.6. Part (c) is immediate from (b} by our minimal choice
of G in (xx). |

The following fact, established in [15], is very useful.

PROPOSITION 2.8: Suppose G = () and M satisfles conclusion (1), (2) or (3) of
Theorem 1.1. If Q = QF (q), assume that M is not the stabilizer of a maximal
totally isotropic subspace of V. Then M T = M9 (here M T denotes the T class
of M). Thus if @ < X <T, then X = QNx(M).

Proof: The conjugacy of members of C;, 1 < < 3, is discussed in Sections 4.1-
4.3 of [15] and the results are tabulated in Column V of Tables 3.5.A-3.5.F. The
second conclusion follows from the first by a Frattini argument. 1
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LEMMA 2.9: Let G be a classical linear group containing ) and satisfying the
hypotheses of Theorem 1.1. Then G satisfies the conclusion of Theorem 1.1 if

and only if Q does.

Proof: Suppose Theorem 1.1 holds for (Q, M). If ME = M, then G = QNg(M)
and £(G) = {(Ng(M)) + 1, and we are done. If not, then by Proposition 2.8,
Q = Q. (g), M is the stabilizer of a maximal totally isotropic subspace of V and
G contains v inducing an involutory graph automorphism on 2, whence case (4)
of Theorem 1.1 holds for G.

Now suppose Theorem 1.1 holds for G. If case (4) holds, then we may replace
(G, M) by (M, Mg). Then changing notations if necessary, we have in all cases
that Q € M and ¢(G) = (M) + 1, whence £(Q) = (M N§)+1 and the theorem
holds for . |

LEMMA 2.10: Let G be a classical subgroup of I'L(V) containing (V') and
satisfying the hypotheses of Theorem 1.1. Let Z be a subgroup of Z(GL(V))NG.
Then G satisfies the conclusion of Theorem 1.1 if and only if G = G/Z does.

Proof: This is immediate from the fact that Z C M for any M in the conclusion
of Theorem 1.1. ]

COROLLARY 2.11: We may (and shall) assume that G = €.

Definition 2.12: We shall call an F[M]-module V induced if V = ind}f (U) for

some proper subgroup H of M and F[H]-module U (see [9], p. 228). We shall call
an F[M]-module V tensor-induced if V = @ ind¥ (U/) for some proper subgroup
H of M and F{H]-module U (see [9], p. 333).

For the analysis of the induced and tensor induced cases, the following fact is

useful.

Definition 2.13: Let n =¢,2" + -+ ¢12 + ¢ with ¢; € {0,1}, ¢, = 1. Suppose
C ={co,c1,"*+,¢-} = C1 UCy is a partition of C and

n; = Z Cj2j, 1= 1,2.
c;€C;

We say that n = n; + ny is a dyadic splitting of n. We call it a proper dyadic
splitting if n; # 0 # ns.
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THEOREM 2.14: Let G = Sym(n). If n # 2" and n = ny + ng is a proper
dyadic splitting of n, then G has a maximal intransitive subgroup M £
Sym(n,) xSym(nz) with £(G) = {(M)+1. Ifn = 2" > 4and m = n/2, then G has

a maximal imprimitive subgroup M = Sym(m) ! Sym(2) with ¢(G) = ¢{(M) + 1.
Proof: This is essentially the main theorem of [7]. |

The organization of the proof of Theorem 1.1 in Section 3 is as follows.
Assuming that (G, M) satisfies (xx) with G = Q, we consider the possibili-
ties for M, following Aschbacher’s organization of cases, modified by Seitz to

include stabilizers of twisted tensor decompositions.

Definition 2.15: E acts absolutely tensor indecomposably on V (resp.
absolutely tensor decomposably) on V if E acts tensor indecomposably (resp.
tensor decomposably) on V< = V ®f L for every (resp. some) finite extension £
of F. E acts absolutely irreducibly (resp. absolutely reducibly) on V if E
acts irreducibly (resp. reducibly) on V* for every (resp. some) finite extension
L of .

In Lemmas 3.1-3.5, we assume E = E(M) acts absolutely reducibly on V
and we show that for some M* with ¢(M) = £(M*), conclusion (2) or (3) of
Theorem 1.1 holds, contrary to assumption. In the next three lemmas, we assume
E = E(M) acts absolutely tensor decomposably on V and find M* with /(M) =
¢(M*) and E(M*) acting absolutely reducibly on V. We are then reduced to
the case where E = E(M) is a quasisimple group of Lie type acting absolutely
irreducibly and absolutely tensor indecomposably on V. If E is classical, we
argue that M is the centralizer of a field, graph, or graph-field automorphism on
Q) and then reach an easy contradiction in this case. Finally we argue that E

cannot be exceptional, yielding a final contradiction.

Definition 2.16: If V. = V; L V, satisfies the conditions of conclusion (2) of
Theorem 1.1, we shall call it an admissible (orthogonal) splitting of V. If
the extension K/F with (K: F) = r and the associated subgroup M of 'Lz (g")
satisfies Conclusion (3) of Theorem 1.1, we shall speak of an admissible field

extension.

If M stabilizes a K-linear structure of V there is an associated embedding of
K into I. We denote this embedding by p(K), so that M = Cg (p(K)).
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3. The proof of Theorem 1.1

Throughout this section we assume that G and the chain
G=MyODM=M;DM;D---D> M, ={e}

satisfy Hypothesis (xx). We consider the possible structures of M. In the first
two lemmas we treat the case that E(M) acts reducibly on V. We fix E = E(M).

LEMMA 3.1: Suppose V is induced as an F[M]-module. Then either V =
Vi L Va with (Vq, f1) isometric to (Va, fa) (here f; = f|v, and f is the form
associated to G), or there exists a maximal subgroup M* with ¢(M*) = £{(M)
and V =W, L W3 as an F[E(M*)]-module.

Proof: Suppose not. According to Table 4.2.A from [15] we have V = V; L
.-+ 1 V; as F[E}-module with s > 3. For an arbitrary orthogonal decomposition
Uy L L Ugof V, we denote by Ng({Ui,...,Us}) the subgroup of G which
permutes the set {Uy,...,Us}. Similarly, C¢({Un,...,Ux}) shall denote the
subgroup of G that fixes each of the U;. By Corollary 4.2.2 of [15] we have

Ne({Vi,...,Vi})/Ca({V1,...,Vs}) = Sym(s).
If s = s1 + s is a proper dyadic splitting, set
(1) Wi=Vile LV, ,Wo=Vyp L 1V,
Set Y = Np({W1, Ws}) and observe that
Y/Co({V1,...,Vs}) & Sym(s;) x Sym(ss).

By Theorem 2.14, ¢(Sym(s)) = £(Sym(s1)) + £(Sym(s3)) + 1 and it follows that

(M) =£(Y)+1. Set M* = Ng ({Wy,W}). As Stabp(W;) acts imprimitively

on W; we have M* # M N M* =Y and so £(M*) > ¢(M) and the result holds.
Otherwise we may suppose s = 27, r > 2. Set

(2) W1=V1_L---LV%,W2=V%+1L---J_V3.
Then W, and W, are isometric. By Theorem 2.14,

2(Sym(s)) = ¢ (Sym (—;—) ZZz) +1,
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and it again follows that
M) =E(Ny ({W1,Wa})) +1.

Letting M* = Ng({W;,W,}), we are done as before. |

LEMMA 3.2: FE acts irreducibly on V.

Proof: Suppose not. By Proposition 2.7, E # {1}.

Suppose E stabilizes a proper isotropic subspace V3 of V. If G is not of
type L, Theorem 1 of [1] implies G is of type U, S or Ot and V =V, & V;
with V] 2 V5 totally isotropic subspaces of V. Furthermore, M must contain a
subgroup D of index 2 with D C P for some maximal parabolic subgroup P of G
and LN F(P) = {1}. Then clearly ¢(M) < £(P), a contradiction. If G is of type
L thenV =V, ®---®Vj as an F[E]-module. By Lemma 3.1 we may replace M
by M* (if necessary) so that V =V} L V; as an F[E]-module. As above, there is
a subgroup of index at most 2 and contained in a maximal parabolic subgroup
of G, a contradiction.

Now suppose E stabilizes a proper non-degenerate subspace of V. By Theorem
1 of [1] together with an application of Lemma 3.1 (and replacement of M by M*,
if necessary), we may assume V = V; L V; as an F[E]-module. Set dimg(V;) = n;.
As Conclusion (2) of Theorem 1.1 does not hold, we have G = Q¢(V') and we may
assume that either n; = ny are odd or n and ny are odd but ny # 1. Thenn > 5
and we may always assume that n; is odd and n; > 3. Set N; = Staby (V).
By induction, there exists, for n; odd and n; > 1, L; = Staby, ({Vi1, Via}) where
V: = Vi1 L Vi, dimp(V;;) = 1 and £(N;) = £(L;) + 1. If n is odd set

Wi=Vi, W=Vl V;

and M* = Stabg({W1,W2}). Then £(M*) > ¢(M) and M* satisfies Theorem
1.1(2), a contradiction. If n is even, set

Wi=Vii LVy, We=VipLlVy

and M* = Stabg({W1, Wa}) (here Vo = {0}, if dimp(V2) = 1). Again we have
a contradiction. |
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Definition 3.3: Let G = G(q) be a classical linear group of hyperbolic length
with natural module V.
(1) We say G is split hyperbolic if G has a longest subgroup M such that
E(M) acts reducibly on V.
(1) We say G that G is non-split hyperbolic if
(i) G is not split hyperbolic and there is a longest subgroup M of G such
that E(M) acts irreducibly but not absolutely irreducibly on V; or
(i) G is of type GL{(p™) or O5(p™); or
(iii) F(g) < G < OF(p™) (or the analogous projective groups) and
neither subnormal (S)Ly(p™) subgroup has parabolic length; or
(iv) G’ =[G,G]) = (S)Ls(p), p € {5,7,11,19, 29}.
Henceforth we may assume that if M* is any longest subgroup of G, then
E(M*) acts irreducibly on V.
The following result will be invoked in Section 4. For this reason we formulate

it without the assumption that G is a counterexample to Theorem 1.1.

PROPOSITION 3.4: Suppose that G is a classical subgroup of GL(V) with E(G)
quasisimple and V' a vector space over the field F. Suppose that every proper
classical subgroup of G satisfies Theorem 1.1. Furthermore, suppose that G is
non-split hyperbolic and that M is a longest subgroup of G with M the stabilizer
in G of a K-linear structure on V' for some proper field extension K of F. Let

G=My>M=M>-->M;>--> M, ={e}

be a chain with ¢(G) = t. Then there exists a proper tower of fields

) F=K CK, C---CK,
such that M; is the stabilizer in G of a K;-linear structure on V for 1 <i<s
and one of the following holds:

(1)
(a) E(G) =SL(V), SU(V) (dimg(V) odd) or Sp(V), and
(b) s =Q(n) and dimg, (V) = 1; and
(c) £(G) =2Q(n) + Q(|T|) where T = p(K,) N G; or

(2)

(a) E(G)=Q (V) with n = dimp(V) even; and
(b) s =(n) — 1 and dimg, (V) = 2; and
(¢) {G) <20(n) — 1+ Q(|T|) where T 2 SO5 (K;) = GU (K,).
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Proof: Suppose M; and K; are as described for 1 < i < s with dimg, (V) = 1
if E(G) is not orthogonal and dimg, (V) = 2 if F(G) is orthogonal. If E(G) =
SU(V'), the results from Section 4.3 of [15] together with our hypotheses easily
imply dimp(V') odd. The maximality of M; in M;_ implies that (K;: K;_;) = p;
is a prime divisor of dimg, , (V}. Thus s = (n) or Q(n) — 1. Moreover in the
first case

M, = (GL1(K;) N G): {(zs),

where (z5) = Gal(K, /F) = Z,. Thus (b) and (c) hold in this case. If s = Q(n)—1,
then
M, = (05(Ks) N G) : (x5},

where again (z,) = Gal(K,/F) & Z,. Moreover it is clear from Section 4.3 of
[15] that € = —, E(G) = (V) and, as dimg, (V) divides dimp(V), n is even.
Thus (2) holds in this case.

Thus if the proposition fails, then from Table 4.3.A of [15] we conclude that
either E(M,) is a quasisimple classical linear group or E(M,) = Qf (K,) (the
case dimg, (V') = 2 with M, of type QF (K,) having been treated above). In the
latter case, by induction, we must have s = 1, G = Qf (F) where (K: F) = r is
prime. We shall eliminate this case first.

By Lemma 2.9 and Table 3.5.E of [15], if 7 is odd, we may assume G = Of (F).
Then M = Of (¢") - (x), where (z) = Gal(K/F) & Z,. Moreover, by Proposition
2.7(b), if L; @« <M with L; = SL,(K), then L; has hyperbolic length, whence
L;) = Qq" + 1) + 2, where |[K| = ¢". Thus by the structure of M, {(G) =
(M) +1=29(¢" +1) + 7. Now consider the chain

05 (K) - (z1) x 05 (K) - {x2) C 05,(F) x 05,.(F) C 05.(F) 1Sym(2) C G,

where (z;) = Gal(K/F) = Z,.. As O; (K) = Dg-41, we see that £(G) >
2Qg" + 1) + 8, a contradiction. Finally, if » = 2 and G = QF (F), we see
from 15.1.8 in [1] that M is conjugate via a triality automorphism to M; =
Ne({V1,V2}) where V.= Vi 1 V5 and Vi 22 V, has Witt index 1. As ¢(M;) =
(M), G is split hyperbolic, contrary to assumption.

Thus, if Proposition 3.4 fails, then E(M;) is a quasisimple classical linear
group. As Theorem 1.1 applies to E(M;) by assumption and as G does not have
parabolic length, Proposition 2.7(c) implies that F(M,) has a maximal subgroup
L, with ¢(E(M,)) = €(Ls) + 1 and with (E(M,), L;) satisfying Conclusion (2)
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of Theorem 1.1. Now let Noy; = N, (Ls), so that €(M,) = ¢(Ny41) +1 by
Proposition 2.8. Then V = Vi L V; as a K;[Nst1)-module and this is an
admissible K,-splitting of V. Now define N;, 1 < i < s, to be Stabg({V1, V2})
where the V; are regarded as K,_;-spaces. Then we have a proper chain

GDON;DNyD--- DNy, DNy

with (Ns41) = €(G)—(s+1) and with N; the stabilizer of an admissible splitting

of the F-space V, contrary to assumption. ]

LEMMA 3.5: E acts absolutely irreducibly on V.

Proof: Suppose not. Then by Lemma 3.2, M is the stabilizer of a K-linear
structure on V' with K a proper field extension of F. Now by Proposition 3.4,
E(G) is one of SL(V), SU(V) (dimp(V) odd), Sp(V) or Q= (V) and there is a
chain of stabilizers as described. In each case, it is clear that there is a chain

C*:G2OM*D---D{e}
with M* an admissible field extension stabilizer and with £(C*) = £(G), contrary

to assumption. [ |

The next two lemmas treat the case where E(M) acts tensor decomposably on
V. They parallel Lemmas 3.1 and 3.2.

LeMMA 3.6: SupposeV is tensor-induced as an F[M]-module. ThenV = V;QV,
with (V1, f1) isometric to (Va, f2) (here f = f1 ® fo is the form associated to G).

Proof: Suppose not. Then V =V, ® --- ® V, as an F{M]-module with s > 3. If
8 = 81 + 8 is a proper dyadic splitting with s; > s9, set

(3) le‘/l®"'®‘/sla W22V91+1®"'®‘/;'
If s =27, set
(4) Wi=Vi® - @Vsy, Wo=Ve1®---QV,.

As in Lemma 3.1, we are done provided Stabg(W;) # Stabys(W;) for i = 1 or 2.
As s > 2 and s; > 1, this is immediate if Stabg(W;) acts tensor indecomposably
on Wi. As dimp(V;) > 2, this is true unless W; is a 4-dimensional orthogonal
space of maximal Witt index and V; is a 2-dimensional symplectic space for all
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i. As 51 > 83, we are reduced to the cases G & Spg(F) and G = Qf(F) with
dim]F(Vi) = 2.
If G = Spg(F), then by Proposition 4.7.4 in [15], we have

M = 2. ((PSpy(q))® - 2%) - Sym(3).

However, if V. = Uy, L Uy L Uz 1 Uy with dimp(U;) = 2 and M* =
Stabg({Us, . .., Us}), then

M* = (Spy(q))* - Sym(4)

and #(M*) = £(M) + 3, a contradiction. Similarly if G = Qfs(F), then by
Proposition 4.7.5 in [15], we have

M 22 ((PSpy(q))*-2°) - Sym(4).

On the other hand, if V = U; L --- 1 Uy with dimp(U;) = 4 and U; of
maximal Witt index for all 4, and if M* = Stabg({U1, . .., Us}), then M* contains
Q+(U;)1Sym(4) and as Q+(Uy) = 2-((P Spy(q))?), we easily have £(M*) > (M),

a final contradiction. |

LEMMA 3.7: E acts tensor indecomposably on V.

Proof: Suppose on the contrary that V = V; ® V, as an F[E]-module. Let
E = E,E; where E; = Q(V;, f;), i = 1,2. By the results from Sections 4.4
and 4.7 of [15], we may assume that E; is quasisimple and if both F, and E5
are quasisimple we may assume that n; = dimp(V}) > ne = dimp(V3). Let
N = Ny (E;) = Ny(Ez), so that [M: N] < 2 with equality only if (V4, f1) is
isometric to (Va, f2).

We shall first consider the case M # N and shall exhibit a proper subgroup
H of G with ¢(H) > (M), contrary to £(G) = £(M) + 1. Let m = dimg(V1) =
dimg(V3), so that n = m?2. From Table 4.7.A in [15], noting that ¢t = 2, we have
m > 3. If G = SL;2(q), then

M C (Gy*Gy)-{z), withG;=GL; (q), (r)=Sym(2)

and —I € G, N Gy. As m? > 2m, G contains H = GL; (g) 1 Sym(2) acting
imprimitively on a 2m-dimensional subspace of V and £(H) > £(M) + 1. Thus
by Table 4.7.A from [15], we may assume that G 2 Qf,(q) with € € {+,0}.
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Suppose that E(M) = E; x E; with E; & E, & Q¢ (¢). Then by 4.7.6-4.7.8
from [15],
MY<UEM))+6
and {(M) = £(E(M)) + 2 if m is odd. Now
G D> H = (L;1Sym(2)) x Ly, with Ly = Q. (q), L2 = Q2_s,,(q).

Thus ¢(H) — 4(E(M)) > 1+ ¢(L3). If m = 3, then L, = Q3(q) = Ly(q) and
¢(L2) > 4. If m > 3, then QF (¢) C L, and so £(Ls) > 26(Ly(q)) +1 > 9. Thus in
all cases, /(H) > £(M), a contradiction. Thus G = Q}',(q) and E(M) = E; + E,
with E; = Sp,,(g), m > 4, and with ¢(M) — {(E(M)) < 2 by 4.7.5 of [15]. Now

SP,.(9) C Sp,(q) * Spa(q) C 93, (q)

and so £(Q7(q)) > £(Sp,,(g)) + 5. As m > 4, we have m? > 4m and so

m

G > H=Qf (g)Sym(2)

and
£(H) > 2¢(Sp,,(g)) + 11 > ¢(M),

a contradiction.

Thus we have M = N, i.e. E; 4 M and E; quasisimple. By Propositions
2.7(c) and 2.8, there exists Ly C F; with £(E;) = €(L1) + 1, ¢(M) = £(N1) + 1,
where Ny = Njp(L;1), and with either

(a) Vi = Vi1 L Vi3 is an admissible splitting with L; = Stabg, ({V11, Vi2}); or

(b) K; is an admissible field extension of F and L; stabilizes a K;-linear

structure on Vj.
In case (a), N; stabilizes the orthogonal splitting

V:Ul_LUzg(V11®V2)-L(V12®V2)a

while in case (b), N; stabilizes a Kj-linear structure on V. In any case, by
the results from Sections 7.1-7.3 of [15], the full stabilizer M* in G of such a
structure is maximal in G. As N; < M, we have N7 < M* and so {(M*) > ¢(M).
Replacing M by M*, we have reduced to a previous contradiction. |

If M is the centralizer of a field automorphism of G we shall refer to M as a
fixed field subgroup of G. If M is a subgroup of type Cg from Theorem 1 of [1]
(see also Section 4.8 of [15]) M shall be called a fixed form subgroup of G.
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LEMMA 3.8: M is neither a fixed field nor fixed form subgroup of G. In
particular, E cannot be represented over any proper subfield of F.

Proof: Suppose not. According to Tables 4.5.A and 4.8.A, either F is quasisimple
of classical type over a (possibly proper) subfield Fy of F or G is type L4 and E =
QF (). In the latter case we have {(P) > ¢(M) where P is a maximal parabolic
subgroup of G. Thus by Propositions 2.7(c) and 2.8, there exists M; C M with
(M) = £(M,) + 1 and either

(1) V = U 1 U, is an admissible splitting and M; = Stabys ({U, Ua}); or

(2) Ko is an admissible field extension of Fq with (Ko: Fg) = r and M, is the

stabilizer of a Kg-linear structure on U.

In case (1), we may assume that U; = UNV;, where V =V; L V; is an admissible
splitting and M* = Stabg({V1,Va}) with M; = M* N M. In case (2), we may
assume that K is a common extension of Ky and F with (K: F) = r and that M* is
an admissible stabilizer of a K-linear structure on V with M; = M*NM. Again,
in either case, replacing M by M*, we have reduced to a previous contradiction.
[ |

Definition 3.9: Suppose E C Q(V) with E a quasisimple group of Lie type

acting absolutely irreducibly on V over F, where |F| = p°. Assume E = E(p®)

where p® = | Z(X,)] for X,, a long root subgroup of E. If E is of twisted type, let

7 be a non-trivial graph automorphism defining E (as fixed points of a twisted

Frobenius endomorphism of an algebraic group over the algebraic closure of Iy ).
(a) Set

3

{ ¢ ifQ#SUWV),

2 if @ =SU(V).

(b) Set
a if Q is untwisted or V2 V7,

S]]
i

a-|r| if Qis twisted and V 2 V7.
LeMMa 3.10: E = E(p®) is a quasisimple group of Lie type acting absolutely

irreducibly and absolutely tensor indecomposably on V, with@ =¢T (@, ¢, T as
defined above).

Proof: By Lemmas 3.5 and 3.7, E acts absolutely irreducibly and tensor indecom-
posably on V. Thus by Theorem 1 of [1], E is quasisimple and Z(M) = Z(G).
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Now by Proposition 2.7(b), E = E(p®) is a quasisimple group of Lie type in
characteristic p and, by Lemma 3.8, the representation cannot be written over
any proper subfield of F. We adopt the notation of Definition 3.9. In particular,
|F| = p° and @ is as defined above.

Suppose the lemma is false. Then by Corollary 6 of [20] we have r = @/¢ > 1
and M = Ng(Zm(p™)), where

(1) Zu(p*) € {SL(m,p*),SU(m,p* ), Sp(m, p® ), Q%(m, p* ) };

(2) n=m" withr; € r,ﬁ and r; > 1;

(3) a1 | 1€, ri¢ | @.
Set G =G/Z(G), M = M/Z(G) and E = (E * Z(M))/Z(M). Then £(M) +1=
¢(G) and by Theorem 1 of [1}, E <« M < Aut(E). Let InnDiag(E) denote the
group of inner-diagonal automorphisms of £ and Y = InnDiag(E)N M, so Y
embeds in PGL,,(p®). An application of Steinberg’s tensor product theorem (see
Proposition 5.4.6 of [15]) shows that M can induce a group of field automorphisms
of order at most r; or 4r; according to whether £ = Z,,(p*') is untwisted or

twisted. In either case we have
{M) < (Y) +Q(r1) + 2.
From the containment PGL,,(p™°) - Z,, C PGLy,.,, (p°) we conclude
(5) M) < L(PGLpn.r, (p°)) + 1.
Now G = T (p©), where J € {SL,SU, Sp,Q¢} and
GLun.r, (p°) C T2, +1(5°),

and so Eq. (5) together with M a longest subgroup of G forces n = m™ < 2mr,.
As ry > 1, this reduces easily to the cases:
(i) m=2,n€ {4,8,16}, or
(ii)y m=3,n=9,0r
(i) m =4, n = 16.
The case m = 2, n = 4 corresponds to L2(¢?) = Q5 (). The case m =2, n =8
yields the embedding (see [14])

Sp2(¢®) - (n) < Spg(g),  where (1) = Gal (Fs /F,) .

However we have Sp,(¢3) - (7) < Spe(g) < Spg(g) and so &(M) < 4(G) -1, a
contradiction. The case m = 2, n = 16 yields the embedding

PGLa(g*) - (n) < Qie(a), (n) = Gal (Fe /F,).
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Now PSL2(g*) = Q7 (¢%) C Q5 (q) C Q5o(g) and so (M) < ¢(G) — 1 again.

If m = 3, n = 9, we have (according to [14]) the embeddings L3(¢?) C Lo(gq)
and L3(q%) C Us(g). In the first case, we have H = GLg(q) C G with £(H) >
¢(M). In the latter case G has a maximal parabolic subgroup P with Levi factor
L containing SL3(¢?) and so £(P) > ¢(M). Thus we have a contradiction in both
cases.

Finally, if m = 4 and n = 16, we have E C SL4(q?) with {(M) — ¢(E) < 3. As

PSL4(¢?) 2 O (¢%) C f(9) € Y (a) x Qi(e) C Q6(0),

we immediately have ¢(M) < £(G)—1, unless G = Splg(q). In that case, we have
GL4(q%) c GLg(q), the Levi complement of a maximal parabolic subgroup of G,
a final contradiction. |

LEMMA 3.11: F is not a classical linear group.

Proof: Suppose not. By Lemma 3.10, @ = €. Set @ = a or 2a according to
whether E is twisted or untwisted. As E cannot be represented over any proper
subfield of F, an application of the Steinberg tensor product theorem implies that
M can induce only those field automorphisms in Gal(F,z /Fpz ) < Zo. Arguing as

in the proof of Lemma 3.10 we conclude
(M) < £(PGLq4(p%)) + 3,

where d is the dimension for the natural module for £ (where E/Z(E) = E).
Observe that for each J € {SL,SU, Sp, Q¢}, there is a maximal parabolic sub-
group P of Jo411(q), the Levi factor of which contains a subgroup of index 2 in
GL4(p®). Thus

£(P) > £(PGLq4(p%)) + 3 > £(M),

and so we conclude n < 2d. Moreover, if n = 2d, G = Q,,(q) and E 2% Q5(q).
Using Proposition 5.4.11 of [15], we arrive at the following list of possibilities:
(i) E = La(q) with dimg(V) =3 or 4,
(u) E = L§(q) with dimg(V) =
iii) F = Li(q) with dimp(V) =
(iv) E = L§{q) with dimg(V) = 10
(v) E =Q4(q) with dimp(V) =
(vi) E = Qy(g) with dimgp(V) = 16.
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As Q7 (q) & La(g?), we may discount the case (La(g), Q5 (¢)). We may likewise
discount the case L§(q) = PQg(q). In the other L¢ cases, we see from Proposition
5.4.11 of [15] that G =2 SL;,(¢) and we conclude that ¢(G) > £(M) + 1. Finally,
when E = Q5(q), the representation is the spin representation and by Proposition
5.4.9 of [15], the possibilities for E and G are

(a) E = Q(a), G = (0),
(b) E = Qfy(g), G = SLis(9),

(c) E=Q(a), G =SUse(g)-

If (a) holds, Proposition 2.2.4 of [13] shows that £ = M is conjugate via a
triality automorphism to a reducible subgroup of G. If either (b) or (c¢) hold,
E = Q%,(q) € SLig(g) and so £(G) > £(M) + 1, a final contradiction. 1

PROPOSITION 3.12:

(1) Let L = Ga(q) and let L < X < Aut(L) with gcd(q,3) = 1. There exists a
longest subgroup My of X with either MoN L a maximal parabolic subgroup
of L or Mo L = SL3(q) - Zg, € = £1.

(2) Let L =3Dy4(q) and let L < X < Aut(L). There exists a longest subgroup
My of X with either My N L a maximal parabolic subgroup of L or one of:

(a) Mon L = (SLy(¢®) % SLa(q)) - Zs, or

(b) MoN L2 (Zgaiegsr) -SLa(3), e = %1, or

(¢) MpnN L= (Zq4+q2+1) “Zy

Proof: This follows from Theorem A of [11] and the main theorem of [12]. |

LEMMA 3.13: FE is an exceptional group of Lie type of Lie rank at least 4.

Proof: Suppose not. Then, as p > 3, we have E = Ga(q) or E = 3D4(q). First
suppose E = 3D4(q). By Proposition 3.12, we may assume that M is of type
(a), (b), or (c). In particular, F*(M) cannot act both absolutely irreducibly
and tensor indecomposably on V. Using the main results of [1], My is properly
contained in a maximal subgroup M* of G acting absolutely reducibly or tensor
decomposably on V. We are thus reduced to a previous case.

Now suppose that M = E = G3(g). Then by Proposition 3.12, we may assume
that My = SL3(q) - Zo. It is well known (see [10]) that if dimp(V) < 14, then
dimp(V) = 7 and we have G = Q7(g). As Q7(q) C Z(V) whenever dimg(V) > 14,
we may certainly assume that G = Q7(g). Now if P is the stabilizer in G of a
maximal isotropic subspace of V, then the Levi complement of P is isomorphic
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to a subgroup of index 2 in GL3(g). Also there exists a stabilizer N of a non-
isotropic line with N’ 2 Qg (q) & Zy - Us(g). Now clearly either £(P) > ¢(M) or
¢(N) > £(M), a contradiction. |

PROPOSITION 3.14: Let E = E(F) be a simple adjoint algebraic group of type
Fy, Eg, E7 or Eg (where F is the algebraic closure of F = Fpe ). Suppose o is a
Frobenius endomorphism E with E = E(p®) = OP (E,) a simple group of Lie
type. Suppose further that E C G with G a quasisimple classical linear group
which is a minimal counterexample to Theorem 1.1. Then there exists a longest
subgroup My of E, satisfying one of the following:

(1) Mo = Ng, (D,) where D is a parabolic subgroup of E; or

(2) Mo = Ng_ (D,) where D is reductive of maximal rank in E.

Furthermore, there exists no non-trivial F{[E}-module on which E(My) acts
absolutely irreducibly and tensor indecomposably.

Proof: Suppose neither (1) nor (2) hold. According to Theorem 2 of [17], a
longest subgroup My must be of one of the following forms:

(a) F*(My) is simple; or

(b) My is the centralizer of a graph, field or graph-field automorphism of

OP' (E,) of prime order; or

(c) F*(Mp) is as in Table IIT of [17] and F*(M,) = OP (X,) where X = X7 is

as in the last column of Table II of [17]; or

(d) E = Eg(F) and F*(Mp) is either Alt(6) x Alt(5) or Alt(6) x PSLy(p®); or

(e) Mo = Ng_(A) where A is an elementary abelian group given in Theorem

1(II) of [8].
Since E has hyperbolic length, Lemma 4.2 and Proposition 4.3 of [4] imply that
there is no longest subgroup My of type (d) or (e).

Suppose M is a longest subgroup of E of type (c). For each choice of F*(M),
one can easily show that there exists a subgroup My of maximal rank in £
with £(Mp) > ¢(M). We present a representative case, the others being entirely
similar.

Let E = Fy(q), ¢ = p* and suppose M is a longest subgroup of E with
F*(M) = Ga(q) % L2(g). As M can induce no non-trivial field automorphisms
on F*(M), we have

(6) €M) < 1+ £(Ga(g)) + £(L2(q))-
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Since E has hyperbolic length (since (1) does not hold), Theorem 3.1 of [2] implies
that each simple component of F*(M) has hyperbolic length. Thus by Lemma
4.1 of [4] together with Theorems A and B of [11], a longest chain in G2(g) passes
through one of the following groups:
(i) SLa(g): 2;
(i) SUs(q): 2;
(iii) (SL2(q) *SL2(q)) - 2;
(iv) Go(g'/"), r a prime.
Suppose (1) or (ii) holds, so Eq.(6) becomes

€M) < 3+ €(SL3(q)) + €(L2(q)),

€ = +1. According to Table 5.1 of [16], there is a subgroup My of maximal rank

of the form
Mo = (SL3(q) *SL3(q)) - Z(s,9—¢) * 2-
Then
€(Mo) — £(M) > £(SL3(q)) — 2 = £(La(g)) > O,
as desired.

Next suppose (iii) holds, so £(M) < 4+ 3¢(L2(q)). We choose My from Table
5.1 of [16] of the form
22 PO (g) - Sym(3).

In PQJ (g), there is a maximal parabolic subgroup with a Levi factor containing
three copies of Lo(q), so trivially we have ¢(Mp) — £(M) > 0.

Suppose (iv) holds. Inside G2(q'/"), a longest subgroup must be of type (i)-
(iv), and so we must eventually encounter a subgroup of type (i)-(iii) in some
G2 (ql/ %), z =ryrg--- Ty, r =71, 75 (DOt necessarily distinct) primes. In particu-
lar,

€(Ga(9)) =t + (X (¢'%)),

where X (¢'/#) is a group of type (i)-(iii) defined over the subfield of order g!/%.
In each case, choose My as before Then we easily see that £(Mp) > ¢(M).
Suppose M is a longest subgroup of E of type (b). If F*(M) is of the same
type as E, then by induction we may assume that a longest subgroup of M; of M
is reductive of maximal rank. Clearly M; < My, where My is the corresponding

subgroup of E and again we are done.
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Thus by [19] we may assume that E = Eg(q) and F*(M) is isomorphic to
2E¢(Fo) (€ = +1), Cy(Fo) or Fy4(Fo). Suppose F*(M) % C4(F;). Again by in-
duction we may assume that a longest subgroup M; of M is reductive of maximal
rank in M. By inspection of Tables 5.1 and 5.2 of [16], we see that £(M;) < £(M*)
with M* reductive of maximal rank in G. The only subtle case is:

E(G) = Eg(¢q®), E 2*Fe(q), E(M) = SLs(¢?) x SL3(q).

Then E(M*) = SL3(g?) * SL3(¢?) * SL3(q?).

Finally we have E 2 Eg(q), F*(M) & C4(F). Now [M: F*(M)] = 2. By
Lemma 3.13, Theorem 1.1 holds for C4(F) = P Spg(F). Thus we may assume
that a longest subgroup M; of M satisfies one of:

(i) F*(M,) 2 Spy(F) * Spe(F), or

(i) F*(My) = Sp,(F) * Sp,(F), or
(iil) F*(M;) = PSp,(K) with (K: F) = 2.

In case (i), M; C M¢ with F*(M¢) 2 SLy(F) x LE(F), where Li(F) is a 2-fold
cover of PSL§(F). In cases (ii) and (iii), My C M€ with E(M¢) 2 Spin$y(F). We
remark that Sp,(F) = Sping(F). In all cases, M; < M€ and M¢ is reductive of
maximal rank.

It remains to treat case (a). By Theorem 3 of [17] together with Corollary 4
of [18], one of the following holds:

(i) F*(M) = 0¥ (Es), where 6 is a field or graph-field automorphism of E; or
(i) F*(M) = 0" (X,), where X is as in the first column of Table II of [17]; or
(iii) F*(M) = L2(K), where K is some field of characteristic p with p < 113 if

E = Eg(q), p < 67if F = E7(q), and p < 43 if E = E(q) or Fy(q). More-
over, the embedding of F*(M) does not lift to an embedding of algebraic
groups.

Note that the groups of type (i) have already been treated in case (b) above.

In case (ii), we easily reduce to the case in which F*(M) = Fy4(q) or Cy4(q) in
E = E§(q), both of which were treated in case (b) above.

It remains to treat case (iii). Suppose M is a longest subgroup of E with
F*(M) = Ls(K). By Zsigmondy’s Theorem (5.2.14 of [15]), there is a prime
divisor r of p** 4 1 which does not divide p™ — 1 for any m < 2ka. Hence by the
order formula for E, we have that k < 6 for E € {F4(q), Es(q)} and k < 9 for
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E =2E4(q). As F*(M) must have hyperbolic length, we have
(M) < 1+ Q(ka) + £(Ly(p"*))
=24 Q(ka) + Q(p** +1)

<2+ Q) +a+Q(p* +1)
<54a+Qp** +1).

For E € {F4(q), E§(q)}, we have 31 < p < 43 and we use
Q™ +1) = ZQ (™ +1)

< Zﬂs(p“’“ +1) + logy (p™* +1)
s=2
5

<3 Q.0 +1) + 2ka.
s=2

Then using Table 1 and the remark that Q,(n) < n/s, we have

Q(p** +1) < 2ka+ma.x{3+ a3—k5}

Thus for E € {Fu(q), E§(q)}, Eq.(7) becomes
7
(M) < max {8+ a+ gak, 10 + 2ak + a}
< max {8 + 224,10 + 19a}.

Since p > 3, Q(p* — 1) > 2 and so

L(E) 2 1+1Q(p" — 1) + 24a
> 124 24a
> max {8 + 22a,10 + 19a}
2 (M),

where [ is the rank of F, a contradiction in all cases.

Isr. J. Math
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Table 1. Q,(p™ 4+ 1) for small primes r, p

o] r=2 [ r=3 | r=»5 |

31 S if n odd 0 0
1 if n even

37 1 24+ Q3(n) if nisodd | 1+ Q5(n) if n=2mod4
0 if n is even 0 otherwise

41 1 14 Q3(n) if n is odd 0
0 if n is even

43 2 if n is odd 0 2+ Qs (n) if n=2mod4

1if n is even 0 otherwise

Finally, if £ € {E7(q),Es(q)}, we may use the cruder estimate that
Q(p®* +1) < aklog,y(p). For E = E;(q) we have k < 9 and p < 67 and this yields

M) <5+a(l+klogy(p)) <5+ 60a < &(E),
a contradiction. For E = Eg(q) we have k£ < 15 and p < 113, whence
(M) <5+a(l+klogy(p)) <54 106a < £,(E),

again a contradiction. Thus the first part of Proposition 3.14 is established.
Now suppose that a longest chain in E is supported by Mo = N (ﬁg) where
D is reductive of maximal rank in E. Let V be a non-trivial F{E}-module on
which E(My) acts absolutely irreducibly and tensor indecomposably. Lift the
embedding E(My) < E < Z(V) to D < E < Z(V @ F). As D is reductive of
maximal rank and p # 2, the Main Theorem of [27] yields a contradiction. 1

LEMMA 3.15: F is not an exceptional group of Lie type.

Proof: Suppose not. Since Z(G) = Z(M), we may reduce modulo Z(G) to obtain
{G) = {(M) + 1, with E = EZ(M)/Z(M) a simple exceptional group of Lie
type of rank at least 4 (by Lemma 3.13). As E cannot be represented over any
proper subfield of F, an application of the Steinberg tensor product theorem
shows that M can induce, at most, a field automorphism of order 2 on £. Thus
¢(M) < £(E)+3. Since E is subnormal and quasisimple, it must have hyperbolic
length. Thus by Proposition 3.14 there is a longest subgroup M of E of maximal
rank such that My does not act both absolutely irreducibly and absolutely tensor
indecomposably on V. Now E is one of Fy(q), E§(q), E7(q), or Es(g). In addition,
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the degree of a minimal module for E in the natural characteristic is, respectively,
26, 27, 56 or 248. One may now inspect Tables 5.1 and 5.2 of [16] and in each
case note that G contains a subgroup M* with ¢(M*) > ¢(My) + 4 and which
does not act both absolutely irreducibly and absolutely tensor indecomposably
on V. As ¢(M*) > ¢(M), we have reduced to a previous contradiction. ]

Now Lemmas 3.13 and 3.15 contradict each other, completing the proof of
Theorem 1.1.

4. The proof of Theorem 4.4

The key to all finiteness results for groups of hyperbolic length is the following
asymptotic lemma, of Turull and Zame.

LEMMA 4.1: Let p be a prime. Then

Q(p™ —
lim ___(p 1)

m—co m

=0.

Thus there exists C = C(p) such that Q(p*" — 1) < Cr for all r.

Proof: The first statement is Theorem A of [29]. It follows that there exists
R = R(p) with Q(p*" —1) <rforallr > R. Let

— _ 2r
C=Cp)= lrsnragﬂﬂ(p 1).

Then clearly Q(p?>" — 1) < Cr for all r < R. [ |

We now apply Proposition 3.4, in conjunction with Lemma 4.1 to non-split

hyperbolic groups (see Definition 3.3), yielding

PROPOSITION 4.2: Letp > 31 be a prime and G = G(p™) a non-split hyperbolic
classical subgroup of GL,(p™) where T is as in Definition 3.9. Then there exists
a maximal torus T of G satisfying each of the following:

(1) Either T = SNG where S is a Singer cycle of GL,,(p™) or E(G) = Qf (p™)

and T is a subgroup of Zpm 41 X Zpmy1;
(2)
{ 20(n) + Q(IT) if E(G) #Qf (™),
I(G) <

5+Q(T)) if B(G) = Qf (0™);
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(3)

{ 20(n) + Q™ - 1) if E(G) # Qf (@™),
UG) <

14290 - 1) if E(G) = Qf (@™);
(4) there exists K = K (p) such that

¢G) < Km <n - i) .
Proof: Let C(p) = C be as in Lemma 4.1 and let
K = K(p) = 2C(p) + 4.

The result is easily checked for all cases where E(G) is not quasisimple. When
E(G) is quasisimple, we may invoke Proposition 3.4 to conclude that £(G) <
2Q(n) + Q(|T)), where T = GN S for S a Singer cycle of GL; (p™) of order
p™" —e. As Q(n) < n, we have (by Lemma 4.1)

/(G)<2n+Cmn < (C+2)mn=ng < Km (n—— %)

and we are done. |
We now extend Proposition 4.2 inductively.

LEMMA 4.3: Let p be a prime and G = G(p™) a group of hyperbolic length
with natural module of dimension n over F = F,=. There exists K = K (p) such
that

G) < Km (n— %) .

Proof: By Theorem 1 of [25] and Theorem 1.1 of [5], we may assume that p > 31,
as there are only finitely many groups of hyperbolic length in characteristic p,
p <29

We proceed by induction on n and let K be as in Proposition 4.2(4). By Propo-
sition 4.2, we may assume that E(G) is quasisimple and G is split hyperbolic.
Thus ¢(G) = (M) + 1, where M stabilizes an admissible orthogonal splitting
V =V1 1 Va. Set n; = dimp(V;) and let Z; denote the full group of isometries
induced by M on Vj, j = 1,2. For each j = 1,2, either Z; is split hyperbolic or
E(Z;) is quasisimple. In the latter case, Proposition 2.7 implies Z; has hyperbolic
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length. Now by induction, we have

UG)=1+4(M) <1+14+4(Th) + 4(T,)

1 1
§2+Km(n1—z>+Km(n2—Z>

1 1
=24+ K —-=-]--K
+ m(n 4) 1 m

1
<K - =
<&m(n-1),

noting that C(p) > Q(p? — 1) > 3 (for p # 2) and so K = 2C +4 > 8. The proof

is now complete. |
We are now ready to prove Theorem 4.4.

THEOREM 4.4: For each prime p, there are only finitely many (possibly 0) finite
Lie type groups G in characteristic p with G of hyperbolic length.

Proof: According to Theorem A of [25], there exists M = M (p) such that G =
G(q) is of hyperbolic length only if ¢ < p™. In particular, there can be at most
finitely many exceptional groups in characteristic p of hyperbolic length. Now
assume G is classical of dimension n over F, with ¢ = p™ < pM. By Lemma 4.3,
there exists K = K(p) with

¢G) < KnM

for all such G. On the other hand,

n2

46) 2 log,(IGl) 2 7 (5 -1) > %

Hence n?/6 < £(G) < CnM, i.e. n < 6CM. So any classical group G in char-
acteristic p of hyperbolic type has natural module of dimension n < 6C(p)M (p)
and has field of definition F, with ¢ = p™ < pM (P), There are only finitely many
such groups and, given the previous remark about exceptional groups, this proves
the theorem. |

5. Length formulas

In this section we prove the following bound on the length of a classical linear
group. This answers a question of L. Finkelstein.
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THEOREM 5.1:  Let G = Z(n,q) be a classical matrix group with minimal field
of definition F, where ¢ = p™, q¢ > 11. Suppose further that G is a split BN-pair
of rank r(G) with B = UH = Ng(U), U € Syl,(G) and H a Cartan subgroup of
G. Then one of the following holds:

(i) 7(G) + log, ([U]) + QHI) < (G) < 1(G) + log, (1U]) + log,(|H); or

(i) E(G) € {SUz2(p), 2(p), Sp4(p), 2 (p), 2s(p)} for p a Mersenne prime.

Remarks: (1) By a Cartan subgroup we mean a conjugate of the (abelian) group
of diagonal matrices of G.

(2) For subgroups of PGL,(q), an analogous result holds (with H replaced by
its image in PGL,(¢) and with suitable adjustments to the list given in (ii)).

(3) Since SLa(p) = Sp,y(p) = SUz(p), SLa(p) and Sp,(p) also fail to satisfy (i).
For the possibilities of E(G) listed in (ii), all groups between E(G) and the full
isometry group fail to satisfy (i). However, in the case of SLa(q) < G < GLa(p),
G fails to satisfy (i) if and only if [G: SLy(p)] < 2.

(4) As OF (q) is not a split BN-pair with respect to B = Ng(U), our hypotheses
force G < SO3,, (q).

(5) The left hand side of (i) is simply the Borel length of G, i.e. the length of a
chain in G which is “longest” subject to passing through B. Thus the left hand
inequality is obvious. We shall refer to the right hand side of (i) as L(G). Thus
we must prove that £(G) < L(G) except in case (ii).

(6) If p < 29, G has Borel length except for ¢ € {2,3,5,7,11,19, 23, 233,29}
{(by Theorem 1.2 of [5]), so by the previous remark (i) is immediate except in
these cases. For ¢ < 11, the exact length (in terms of the Borel length) may be

found in [6]. In all cases,
G)+2
46) < 1(G) + aa) |12
where A(gq) = 2 for ¢ = 7,11 and A(q) = 1 otherwise.
We now proceed with the proof of Theorem 5.1 via a series of lemmas.

LEMMA 5.2: Suppose that G has parabolic length and every classical component
of the Levi complement of every maximal parabolic of G satisfies (i). Then so
does G.

Proof: Let P = QL be a maximal parabolic with £(G) = £(P) + 1 and with
Q = Op(P), L a Levi complement of P. The Cartan subgroup H of G is also the
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Cartan subgroup of L. Also r(G) = r(L) + 1. Thus by hypothesis
UG)={¢(P)+1
< (L) +1+log,(|Ll,) +log,(|Q) + log,(|HY)
=71(G) +log,(|Glp) + logy(|H])
= L(G),

as desired. |

PROPOSITION 5.3: Theorem 5.1 holds for p < 29.

Proof: By Remark (6), we are done unless ¢ € {2,3,5,7,11,19,23,233,29}. In
this case, Theorem 1.3 of [6] gives precise formulas for ¢(G(g)). Using these, one
checks that (i) holds for ¢ > 11. ]

LEMMA 5.4: Let p be an odd prime. Then Q(p+1) > log,(p—1) if and only if p
is a Mersenne prime. Thus if the simple composition factors of G are isomorphic
to PSLs(p), then €(G) < L(G) unless p is a Mersenne prime.

Proof: If p is a Mersenne prime then Q(p + 1) = logy(p + 1) > log,(p — 1).
Suppose next that p is not a Mersenne prime and Q(p+1) > log,(p—1). Since
p+1# 2% we have log,(p+1) > Q(p+1) > log,(p — 1) and so

logy(p+ 1) —loga(p— 1) > loga(p+ 1) — Qp + 1).
Since p + 1 = 2*m with m > 1 odd,
loga(p+1) — Q(p + 1) = logy(m) — Q(m) > logy(m) — logz(m).

The function f(m) = log,(m) — logz(m) is strictly increasing and positive on

[3,00) and so

1
log, (if 1) > logy(p+1) — Qp+1) > logy(3) — 1,

which holds only when p < 5. This leaves p = 3, a Mersenne prime.
Finally, if G = PSLy(p) we may assume G is non-split hyperbolic. Therefore

@) =1+4+Q(p+1)<1+logy,(p—1)=L(G)

if and only if p is not a Mersenne prime. 1
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LEMMA 5.5: Suppose G is of non-split hyperbolic type. Then ¢(G) < L(G) un-
less p is a Mersenne prime and the simple composition factors of G are isomorphic
to PSLy(p).

Proof: We shall make use of the following (which are easily verified):
(i) 2(n) < n/2.
(ii) logy(n+1) <logy(n)+1foralln > 1.
(iii) logy(n + 1) — logy(n) =logy(1+2) < § forn > 3.
Suppose first that G = GL,{g) or GU,(q). By Proposition 4.2

(G) < 29(n) +1ogy(¢™ +1) < 2Q(n) + nlogy(g) + 1.

On the other hand, as ¢ > 3,

n
+ nlogsy(q) — 3

Thus if the result fails, then
n(n-1) 3

2 2
As Q(n) < n/2, we have n = 2 and so G = GLy(g). But then

20(n) > Q(q)

L(G) 2 Ofg) + 1+ 2logy(a) — 5

and
U(G) = 20(2) + 20(q* — 1) < 2 + log,y(q)-

Thus Q(¢) = 1, i.e. ¢ = p and we are done by Lemma 5.4.

As G is non-split hyperbolic, it remains to consider the cases G = SOF (q),
q#p, G =Spy(q),n >2 and G = 05,(q), n > 3. If G # SOf(q), then
Proposition 4.2 implies

(G) <2Q(2n) + Qg™ + 1) < 292(2n) + nlogy(q) + 1.
On the other hand, as ¢ > 3
L(G) > Q(g)n(n — 1) + (n = 1) +nlogy(e) — 5
Again, if the result fails, then

20(2n) > Q(g)n(n — 1) + g —2
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Using 2(2n) < n, we immediately get n < 3 and, using Q(6) = 2, we get n = 2.
Then G = Sp,(q) and in fact, for ¢ > 3,

L(G) > 4Q(q) + 2 + 21og,(q) — 1
and we have
6(G) =2Q(4) + Q¢* + 1) < 5+ 2logy(g) < L(G),

as desired.
Suppose next that G = SO7 (q), ¢ # p with G non-split hyperbolic. Then

0(G) = 2+ 26(PSLy(q)) = 4+ 2Q(g + 1)
< 20(g) + 2logy(g +1)
< 2Q(g) + 2(logy(g — 1) + 1)
= L(G),

which completes the proof. |

LEMMA 5.6: Theorem 5.1 holds unless q is a Mersenne prime.

Proof: Suppose not. By the above we may assume that p > 31 and that G is a
minimal counterexample and G is of split hyperbolic type. Then G has a longest
subgroup M which contains a subgroup F of index 1 or 2 acting on an orthogonal
decomposition V = V; L V; of the natural module V for G. Suppose that G is
not SOF (q) with V; isometric to V5 Then we may take E = E; X E, with either
E; = SO*(V;) or E; = I(V;) # O(V;), where Z(V;) denotes the full isometry
group of V;. Thus induction applies to E;. If G = SOF, (¢) with V; isometric to
Vs, then E has a subgroup E; X E; of index 2 with E; = SO5,, (¢) = Ea. Let

1 if G =507 (¢q) and
6= V1 isometric to V3,
0 otherwise.

Then by induction we have
E(G) < Z(E1) + Z(EQ) +24+6 < L(Ey)+ L(Eg) +2+6.

The following facts are critical and are easily checked.
(1) »(G) > r(Ey) + r(E»).
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(2) 7(G) > r(E1) + r(E3) + 1 in the following cases:
(a) G of type GUy,, E; of type GUgp,y1, Eo of type GUsgpry1,
(b) G of type Ozn41, E1 of type O1, Ey of type Og,,
(c) G of type SO, Ey of type O5,,, E2 of type O5,.
(3) A Cartan subgroup of F is contained in the Cartan subgroup H of G,
except in precisely the three cases listed in (2).

(4) Suppose that a Cartan subgroup Hy of E is not contained in H. Then
log, (|Ho|) — logy(|H]) < logy(g+1) —logy(¢—1) <1 for ¢ > 3.

(5) log,(|Glp) > log,(|E|,) + 2 unless the simple composition factor of G is
PSLa(p).

(6) log,(]SOL,(9)lp) > log,(|Elp) + 3, unless n = 1 and ¢ = p.

Facts (1)—-(4) yield: 7(E;)+7(E2)+logy(|Hol) < 7(G)+log,(|H|) where Hp is a
Cartan subgroup of E. Then using (5) and (6) and recalling that we have already
handled the case where the simple composition factors of G are isomorphic to
PSL2(p), we conclude that

L(G) > L(Ey) + L(Ey) + 2+ 6 > 4(G),

completing the proof. |

We have now reduced to the case where ¢ = p is a Mersenne prime. We shall

need the following sharper bound.

LEMMA 5.7: Let G = GL,(q) where ¢ = p or p? with p a Mersenne prime and
p > 31. Then L(G) > 4(G) + 1.

Proof: Suppose G has hyperbolic length. By Theorem 1.1, G must be non-split
hyperbolic, and so by Proposition 3.4, £(G) = 2Q(n) + Q(¢™ — 1). Suppose, on
the contrary, that

n(n—1)

2Q(n) + Ug" - 1)+ 3 >n—1+Q(q) 3

+nlogy(qg —1).
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and since g(q) = log, (q—%) is strictly decreasing and ¢ > 31 we have 3% >

log, (q—‘_ﬁ) Therefore Eq.(8) becomes

5n n(n—1) 1
) 100 >n—14+9(qg) 5 - <2Q(n) + g)
>n— g + @ — 2logy(n).

As logy{n) < n — 1, we obtain

Q(q)n2 105+ SOQ(q)n + 4

2 100 5

(10) 0>

If ¢ = p then Q(g) = 1 and Eq.(10) is seen to hold only if n < 3. When q = p?,
Eq.(10) holds only for n < 2.

Suppose first that n = 2 and ¢ = p. Then ¢(GL2(p)) =2+ Q(p—1)+Q(p+1)
and we suppose that

24+ Qp-1)+Qp+1)+ % >2+2logy(p—1).
In particular, we must have

(11) 5+ (Q(p+1) —logy(p— 1)) > (loga(p — 1) = Qp - 1)) .

Since h(p) = log, (%) =Q(p+1) —logy(p—1) is a strictly decreasing function
(p > 31), we have h(p) < h(31) < {5. Thus Eq.(11) becomes 2 > logy(p — 1) —
Q(p—1). We saw previously that log,(p—1)—-Q(p—1) = log, (25*) —logs (25+) >
2. Therefore

p—1

3 p—1 9
= —-1) - 1> £ ") - z - z
g > log(p—1) - Q(p 1)_10gz( 5 ) logs( 5 >>5,

a contradiction.

Now suppose n = 1. If {(GL1(g)) = Q(¢—1)+3 > logy(g—1) (for either choice
of ¢) we must have Q(p — 1) > logy(p — 1) — 3 (since Qp + 1) = log,(p + 1)).
Arguing as in the previous case we obtain § > logy(p — 1) — Q(p — 1) > 2 for
p > 31, a contradiction.

Finally suppose that G has parabolic length. Then

YG) =1+ £(P) = 1+ £(0,(P)) + (L),
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where L 2 GL,,(q) x GL,_m(q). Applying induction, we obtain

-1 2
(G)<n—-1+ Q(q)% ~3 +nlogy(g — 1),
and s0 €(G)+ t < 4(@)+2 <n-1+ Q(q)ﬂ%;l) + nlogy(g — 1), as desired.

Let p be a Mersenne prime and set

B = {Spy(p), GUza(p), O3(p), Sp4(p), OF (p), Os(p)}-
An easy calculation yields the following:

LEMMA 5.8: Let G € B. Then

£(G) < L(G) + 2log, (%J_F—D <L(@) + %

LEMMA 5.9: Theorem 5.1 holds for G = I(n,p) with p a Mersenne prime.

Proof: We proceed by induction on |G|. By Lemma 5.5, we may assume that G
is not of split hyperbolic type. According to Proposition 5.3, we have p > 31.

Suppose that G is of parabolic type. Let P be a maximal parabolic subgroup
of G with ¢(G) = £(P)+ 1. Let L be the Levi complement of P and let K and J
be its components. By Lemma 5.2, some component of P lies in B. So if K € B,
then necessarily J 2 GL,,(g) with m > 1 and ¢ = p or p?. Now by Lemmas 5.7
and 5.8,

UK)<L(K)+3 and ((J)<L(J)—3

and so £(P) < L(P), whence as in the proof of Lemma 5.2,
{G) < L(P)+ 1= L(G).

Finally suppose that G is of split hyperbolic type. Let M be a longest subgroup
of G of split hyperbolic type. At worst, M has two components, both in B, and
so by Lemma 5.8, (M) < L(M) + 1. Examining the proof of Lemma, 5.6, we see
that we will be done if we can strengthen Fact (5) to

(5%) log, (|Glp) 2 log,(|El,) + 3.

Now (5%) is easily verified to hold whenever G is split hyperbolic and G ¢ B,
except when G = GUj3(p). In this case,

£(GUs(p)) = 3+ 3logy(p +1)
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and
L(GUs3(p)) =1+ 3+ 2logy(p+ 1) + logy(p — 1).

As logy(p + 1) — logy(p — 1) < 1, we have £(GUs(p)) < L(GUs(p)), completing
the proof of Lemma 5.9. |

Combining Lemmas 5.6 and 5.9, we have completed the proof of Theorem 5.1.
We note one further upper bound for ¢(G).

THEOREM 5.10: Let G = I(n, q) be a classical matrix group with minimal field
of definition F, where ¢ = p™ with p > 31. Suppose further that G % SOF (q)
and G is a split BN-pair of rank r(G) with B = UH, U € Syl,(G) and H a
Cartan subgroup of G. Then there exists a maximal torus T of G with

r(G) +log, (IGp) + Q(|H]) < {G) < 7(G) +1og,(IGlp) + AITY).

Proof: We proceed by induction on |G|. If G is non-split hyperbolic, the result
follows easily from Proposition 4.2. Let M be a longest subgroup of G of either
parabolic or split hyperbolic type. By induction, there is a maximal torus Ty of
M with

6(M) < (M) + log, (|M],) + (| Tol).

Let T be a maximal torus of G containing Tp. Clearly Q(|7o]) < Q(|T|) and
r(M) < r(G); so

UG) =4(M)+1< (r(M)+1) +log,(|M],) + Q(|To))
< r(G) + log,(|Gl,) + Q(ITY),

as desired. [ |

6. Concluding remarks

We conclude with a brief discussion of longest chains from a slightly different
perspective. As is clear from the statement of Theorem 5.10, the length of a
classical linear group G in odd characteristic p > 31 is intimately connected with
the numbers Q(|T|) as T ranges over the maximal tori of G. What is not so
evident is that, in fact, the length is determined by a struggle between Q(|T|)
and Q, 7(|G|). Here we let Uy,(T) denote the set of all T-invariant p-subgroups
of G and Qp, 7(|G|) denote the maximum value of [X| for X € U,(T). As T



Vol. 98, 1997 D. P. BROZOVIC AND R. M. SOLOMON 95

varies, the maximum value of Q, 7(|G|) is Q,(]G|) which is achieved uniquely
when T = H is the Cartan subgroup of G.

An easy corollary of Theorem 1.1 is

PROPOSITION 6.1: Let G be a finite quasisimple classical linear group. Then
there exists a longest maximal subgroup M of G which is an overgroup of some

maximal torus T of G.

By Theorem A of [25], for all sufficiently large fields of characteristic p, the
length of G is

Q,(|G|) + rank(G) + Q(|H|)

and M may be chosen to be any maximal parabolic subgroup of G. Moreover,
by Theorem 4.4, for fixed p and all but finitely many G, M may be chosen to
be some maximal parabolic subgroup of G. On the other hand, it follows easily
from Corollary 1.3 of [29] that

PROPOSITION 6.2: Given a classical linear group scheme G and a maximal
toral scheme T, there exists a prime p and a finite field K of characteristic p such
that a longest maximal subgroup M of G(K) must be chosen from among the

overgroups of T'(K).

The list of maximal subgroups in Theorem 1.1 is essentially minimal subject
to containing overgroups of every maximal torus of G(K). Thus by Proposition
6.2, the list in Theorem 1.1 is in some sense as short as possible.

If one wishes to write down “universal” length formulas for finite quasi-

simple classical linear groups, one must proceed as follows:

Definition 6.3: Let G = G(p™) be a finite quasisimple classical linear group of
parabolic length. The parabolic subgroup P of G is called a parabolic root of"
G if there is a chain C of G with .

(1) C:G=Py>P,>--->P.=P>-.-> {e} = Pyg) and P, is a parabolic

subgroup of G for 0 < i < r; and

(2) If L= 0" (P/Op(P)) = Ly % -+ % Lg, then each L; has hyperbolic length.
(Note: We wish to allow the possibility.that P = B, in which case L = {e} and
(2) is satisfied vacuously.)

It is easy to see that we have
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PROPOSITION 6.4: Let G = G(p™) be a finite quasisimple classical linear group
of parabolic length. Then G has a parabolic root P and

{(G) = (rank(G) — rank(P)) + Q,(|0,(P)|) + £(P/Oy(P)).

Thus the length problem is reduced to the hyperbolic case.

Definition 6.5: Let G = G(p™) be a finite quasisimple classical linear group
of hyperbolic length. The “reductive” subgroup R of G is called a hyperbolic
root of G if there is a chain C of G with
(1)C:G=Ry>Ry>-->R. =R> - > {e} = Ryg) and R; is the
stabilizer of an admissible orthogonal decomposition of V for 0 < i < r;
and
(2) If L =0F(R)=Ly%---xL, with V = V; L ... LV, stabilized by R,
Lilv, = idy, for i # j, and each L; is either of non-split hyperbolic type or
of type (S)L2(3).

Again, we have

PROPOSITION 6.6: Let G = G(p™) be a finite quasisimple classical linear group
of hyperbolic length. Then G has a hyperbolic root R.

Now the length of each L; is determined by the formula in Proposition 4.2 (or
ad hoc for the exceptional (S)Ls(p) cases) and so £(R) is determined and we have

{G) = v(ny,-..,ns) +£(R)

where n; = dim(V;) (with V; as in (2) ) and v(ny,...,n;) is the “combinatorial”

function defined as follows:

Definition 6.7: Let G(nq,...,n,) be a game whose initial position is the multi-
set {n1,...,ns} of positive integers. A move consists of adding two of the integers
to produce a new multi-set of size s — 1. The game continues until one reaches
the set {n} = {n1+---+ns}. The value of a move is 1 if the two numbers added
are unequal and 2 if they are equal. The value

vg(n,...,ng)

of the game G(ni,...,n;) is the sum of the values of its moves and the function
v is defined as
v(ny,...,ns) = max{vg(ny,...,ns)}.
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Clearly the game G(ny,...,n;) has s — 1 moves and so trivially
s—=1<w(ny,...,ne) <2(s—1).

It appears likely that even deciding if v(ny,...,ns) > s is an NP-complete prob-
lem.

Thus the “general formula” for the length of a classical linear group entails
difficulties of both an arithmetical nature (factorization of “cyclotomic integers”)
and a combinatorial nature (the value of v(nj,...,n,)). In any particular case,
the determination of the length of a given classical group G = G(p™) must either
proceed recursively via groups of smaller rank or must entail the determination of
Q(|T]) for all maximal tori T of G and the identification of a suitable parabolic or
hyperbolic root containing T'. For small primes p, this task may be expedited by
some elementary properties of the function Q(p™ — 1), in particular Zsigmondy’s
Theorem. This is illustrated by work of the first author in [5]. However, the
computational demands become infinitely unpleasant as p approaches infinity.
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