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ABSTRACT 

Upper  and lower bounds are established for the max imum length of a 

chain of subgroups in a finite classical linear group. Also, it is proved 

that ,  for each prime p, all but  finitely many finite Lie type groups in 

characteristic p have a longest chain which passes through a maximal 

parabolic. 

1. In troduct ion  

There are a number of ways for one to measure the "size" of a finite group G (the 

order of G being the most obvious). Peter Cameron has suggested that  for many  

purposes, the most indicative measure is the l e n g t h  of G, which is defined as 

follows: I f  G is a finite group, ~(G) is the length of  a longest strictly descending 

chain of subgroups in G. This work is concerned with chains of subgroups in 

classical groups. We obtain the following bounds on the lengths of classical 

linear groups: 
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THEOREM 5.1: Let G -- Z(n, q) be a classical matrix  group with minimal field 

of  definition Fq where q = pro, q > 11. Suppose further that G is a split BN-pair 

of  rank r(G) with B = U H  -= NG(U), U E Sylp(G) and H a Cartan subgroup of  

G. Then one of  the following holds: 

(i) r(G) + logp([U[) + fl(lH[) _< t (C)  <_ r(G) + logp(lU[) + log2(lH[) 

o r  

(ii) E(G)  e {SVz(p), fl3(P), Sp4(P), fl+(P), ~25(p)} for p a Mersenne prime. 

Theorem 5.1 is obtained as a corollary of the following result which provides a 

minimal list of "unavoidable" longest subgroups of classical linear groups. Here 

a maximal subgroup M is called a longest subgroup of G if g(G) = g(M) + 1. 

THEOREM 1.1: Let G = G(p m) be a classical linear group with natm'al module 

V of  dimension n over IF = Fq, q = p~,  ~ E {m, 2m}. Suppose that Go ,1 G 

with Go quasisimple and assume that G does not induce a graph automorphism 

of  Go i f  Go is of  type SLn. Then there exists a maximal subgroup M of  G with 

s  + 1 = f(G) satisfying one of the following: 

(1) M = NG(Mo), where Mo is a maximal parabolic subgroup of  Go; or 

(2) G stabilizes a non-degenerate form on V, V = V1 A_ V2 and M = 

Staba({V1,V2}).  Furthermore, ifdim(Vi) = ni and G is orthogonal, then 

n2 is even and, i f  n is odd, then n 1 = 1; or 

(3) K is a field extension of  F with (K: F) = r, where r is the smallest prime 

divisor of  n, and M is the stabilizer in G of  a K-linear structure on V.  

Moreover, either 

(i) G is of  type SLrm (r prime) or SUrm (r prime, r m  odd) and F* (M)  

is of  type SLm or SUm respectively with m >_ 1, or 

(ii) G is of  type Sp4 s or 04s and F* (M)  is of type Sp28 or 028, or 

(iii) G is of  type Sp28 or 02~, (s odd) and F* (M)  is of  type SU~; 

(4) G is of  type 0 +, [G: M] = 2 and G = (M, 7) where 7 induces a graph 

automorphism of  order 2 on M (~176 Moreover, Mo <_ M with Mo the 

normalizer in M of  a maximal totally isotropic subspace of  V and s  = 

e(Mo) § 1; or 

(5) G is of  type SL2(p), p E {5, 7, 11, 19, 29}. 

Our other application of Theorem 1.1 requires some definitions. 

Definition 1.2: Let G be any finite group of Lie type with f~ -- E(G) quasisimple. 

The pa rabo l i c  l eng th  of G, denoted by g~(G), is defined to be max{~(P) + 1}, 
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where P ranges over all parabolic subgroups of G. If g(ft) = g~(f~) we will say 

that G has parabolic length for every f~ < G < F (see below). Otherwise, we say 

that  G has h y p e r b o l i c  l eng th  (Our definition for groups of parabolic length 

differs slightly from that in [2].) 

Remark: According to Definition 1.2, G has parabolic length if and only if G 

contains a longest subgroup M of type (1) or (4) in Theorem 1.1. 

In [25] it is shown that for any fixed prime p, there exists a number F(p) such 

that any quasisimple Lie type group in characteristic p whose minimal field of 

definition has cardinality at least pF(p) must have parabolic length. Alternatively, 

quasisimple groups of hyperbolic length in characteristic p only occur over fields 

of cardinality smaller that pF(p). By itself, this does not imply that there are 

only f in i te ly  many quasisimple groups of hyperbolic length. However, Theorem 

1.1 permits us to establish a bound on the length of groups of hyperbolic length, 

which in turn easily yields 

THEOREM 4.4: For each prime p, there are only finitely many (possibly O) finite 

Lie type groups G in characteristic p with G of hyperbolic length. 

2. Pre l iminar ies  

For the most part, our notation will be consistent with the notation found in 

[15]. Indeed, the results therein are critical to our analysis. 

Let (V, f )  be a n-dimensional vector space over the field of q elements together 

with an associated form f (possibly trivial). We shall refer to G as a classical  

m a t r i x  g r o u p  if G is a subgroup of the full isometry group of (V, f ) ,  and will 

sometimes write G = I (n ,  q). 

We let ft denote any of the groups 

SL(V), SU(V), Sp(V), f~(V), f2+(V), f t -  (V), 

and F any of the groups 

rL(V), rU(V), r Sp(V), roW), ro+(v), ro -  (v). 

For our purposes, a group G is said to be classical  l inear  if 

O < G < ~  
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where X denotes reduction of X modulo a group of scalars. 

In addition, we will refer to G as being of  t y p e  L, U, S, O ~ with e E {o, +, - }  

according to whether 12 is respectively SL(V), SU(V), Sp(V), ~ ( V )  (here O ~ 

denotes an odd dimensional orthogonal group). 

For small values of p, the precise list of Lie type groups of hyperbolic length in 

characteristic p may be obtained and indeed this has been done independently of 

our main theorem in [24] and [5] for p < 29. Thus in this paper we may assume 

the following: 

LEMMA 2.1: p > 31. 

Certain other general results of Brozovic play a critical role in the proof. 

Throughout the ensuing discussion we shall assume the following: 

(*) G = G(q) is a finite quasisimple group of Lie type defined over F = Fq, 

q = p m ,  p_>31. G = M o D M = M 1  D M 2 D . . . D M r  = {e} is a strictly 

descending chain of subgroups in G with g(G) = r (so g(G) = g(M) + 1). 

THEOREM 2.2: We may choose M so that either F*(M)  # F ( M )  or M = 

N a ( T )  for T some non-split maximal toras of G. 

Proof'. This follows from Theorem 5.1 of [4]. | 

THEOREM 2.3: I f  F* (M)  # F ( M )  and L is a quasisimple subnormal subgroup 

of  M,  then either 

(a) L = L( q ~) is a finite quasisimple group of Lie type defined over Fq, , q~ = pm ' ; 

o r  

(b) G / Z ( G )  -~ L2(p) and M Z ( G ) / Z ( G )  ~- As. 

Moreover in case (b), g(M) = g(Na(T))  for T some maxima/torus of G. 

Proof'. This follows from the main theorems of [2] and [3]. | 

Note that  since T is solvable, g(T) = f~([T[) where f~(n) is defined as follows: 

Definition 2.4: Let n = p~l . . .p~.  be the prime factorization 9f the positive 

integer n. Then 

~ ( n )  = OL1 + . - .  + o~ 8. 

The following properties of the function ~2(n) are evident. 

PROPOSITION 2.5 :  

(a) a(n.  m) = a(,O + a(m), 
(b) f~(n) _< log2(n ) for all n >_ I. 
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THEOREM 2.6: Suppose Li is a subnormal subgroup of Mi (0 < i < r) with Li 

a quasisimple group of Lie type in characteristic p. IfLi has parabolic length, so 

does G. 

Proof: If i -- 0, then L -- E(G) and this follows from the definition of parabolic 

length. If i > 0, this follows by induction from the main theorem of [2]. | 

Henceforth we assume the following: 

(**) Hypothesis (,) holds and G is a counterexample to Theorem 1.1 such that  

if M* is a maximal subgroup of G, then Theorem 1.1 holds in every section 

of M*. 

Combining the above theorems we obtain the following result: 

PROPOSITION 2.7: We may assume the following: 

(a) F*(M) r F (M) .  

(b) If  Li is a quasisimple subnormal subgroup of Mi, 1 < i < r, then Li is a 

group of Lie type in characteristic p and Li has hyperbolic length. 

(c) If  Li is a quasisimple subnormal subgroup of Mi, 1 < i < r, and Li is a 

classical linear group, then Li has a maxima/subgroup Ki with g(Li) = 

g(Ki) + 1 and with the pair (Li, Ki) satisfying conclusion (2) or (3) of 

Theorem 1.1. 

Proof: If F*(M) = F(M) ,  then by Theorem 2.3, M = NG(T) for T a non-split 

maximal torus of G. Then by Theorem 1 of [1], G has type SLy(q) or SUr(q) with 

r prime and T is a Coxeter torus in G. But then conclusion (3) of Theorem 1.1 

holds, contrary to assumption. Thus (a) is valid. Part (b) follows by induction 

from Theorems 2.3 and 2.6. Part (c) is immediate from (b) by our minimal choice 

of G in (~-*). | 

The following fact, established in [15], is very useful. 

PROPOSITION 2.8: Suppose G = -~ and M satisfies conclusion (1), (2) or (3) of 

Theorem 1.1. I f  f~ --- f~+n(q), assume that M is not the stabilizer of a maximal 

totally isotropic subspace of V. Then M F = M -~ (here M ~ denotes the F class 

of M) .  Thus i f ~  < X < F, then X = ~ N x ( M ) .  

Proof: The conjugacy of members of Ci, 1 < i < 3, is discussed in Sections 4.1- 

4.3 of [15] and the results are tabulated in Column V of Tables 3.5.A-3.5.F. The 

second conclusion follows from the first by a Frattini argument. | 
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LEMMA 2.9: Let G be a classical//near group containing ft and satisfying the 

hypotheses of Theorem 1.1. Then G satisfies the conclusion of Theorem 1.1 if 

and only if ft does. 

Proof Suppose Theorem 1.1 holds for (ft, M). I f M  C = M ~, then G = f tNe(M)  

and s = s + 1, and we are done. If not, then by Proposition 2.8, 
f t + "  ~, ft -- 2ntq) M is the stabilizer of a maximal totally isotropic subspace of V and 

G contains 3' inducing an involutory graph automorphism on ft, whence case (4) 

of Theorem 1.1 holds for G. 

Now suppose Theorem 1.1 holds for G. If case (4) holds, then we may replace 

(G, M) by (M, M0). Then changing notations if necessary, we have in all cases 

that  ft q: M and s -- s + 1, whence s = e(M N ft) + 1 and the theorem 

holds for ft. | 

LEMMA 2.10: Let G be a classical subgroup of FL(V) containing ft(V) and 

satisfying the hypotheses of Theorem 1.1. Let Z be a subgroup of Z(GL(V) )n G. 

Then G satisfies the conclusion of Theorem 1.1 if and only if G = G/Z  does. 

Proof This is immediate from the fact that  Z c_ M for any M in the conclusion 

of Theorem 1.1. | 

COROLLARY 2.11:  We may (and shall) assume that G = f2. 

Definition 2.12: We shall call an F[M]-module V induced if V = indM(U) for 

some proper subgroup H of M and F[H]-module U (see [9], p. 228). We shall call 

an F[M]-module V tensor-induced if V = | ind M (U) for some proper subgroup 

H of M and F[H]-module U (see [9], p. 333). 

For the analysis of the induced and tensor induced cases, the following fact is 

useful. 

Definition 2.13: Let n = c~2 r + . . .  + c12 + Co with ci E {0, 1}, c~ = 1. Suppose 

d = {co, c l , . . . ,  c~} -- dl u d2 is a partition of g and 

n~ = E c j2J '  i = 1,2. 
cj EC~ 

We say that  n = nl + n2 is a d y a d i c  sp l i t t i ng  of n. We call it a proper dyadic 

splitting if nl r 0 r n2. 
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THEOREM 2.14: Let  G = Sym(n). I f  n ~ 2 r and n = nl  + n2 is a proper 

dyadic spl i t t ing o f  n, then G has a maximal  intransitive subgroup M ~- 

Sym(nl)  x Sym(n2) with e(G) = e ( M ) + I .  I f  n = 2" >_ 4 and m = n /2 ,  then G has 

a maximal  imprimit ive  subgroup M ~- Sym(m) t Sym(2) with f (G) = f ( M )  + 1. 

Proof." This is essentially the main theorem of [7]. | 

The organization of the proof of Theorem 1.1 in Section 3 is as follows. 

Assuming that  (G, M) satisfies (**) with G -- fl, we consider the possibili- 

ties for M, following Aschbacher's organization of cases, modified by Seitz to 

include stabilizers of twisted tensor decompositions. 

Definition 2.15: E acts a b s o l u t e l y  t e n s o r  i n d e c o m p o s a b l y  on V (resp. 

a b s o l u t e l y  t e n s o r  d e c o m p o s a b l y )  on V if E acts tensor indecomposably (resp. 

tensor decomposably) on V z: = V | L for every (resp. some) finite extension L 

of Y. E acts a b s o l u t e l y  i r r e d u c i b l y  (resp. a b s o l u t e l y  r e d u c i b l y )  on V if E 

acts irreducibly (resp. reducibly) on V s for every (resp. some) finite extension 

s ofF.  

In Lemmas 3.1-3.5, we assume E = E ( M )  acts absolutely reducibly on V 

and we show that  for some M* with ~(M) -- ~(M*), conclusion (2) or (3) of 

Theorem 1.1 holds, contrary to assumption. In the next three lemmas, we assume 

E = E ( M )  acts absolutely tensor decomposably on V and find M* with f (M)  = 

f(M*) and E ( M * )  acting absolutely reducibly on V. We are then reduced to 

the case where E = E ( M )  is a quasisimple group of Lie type acting absolutely 

irreducibly and absolutely tensor indecomposably on V. If E is classical, we 

argue that  M is the centralizer of a field, graph, or graph-field automorphism on 

and then reach an easy contradiction in this case. Finally we argue that  E 

cannot be exceptional, yielding a final contradiction. 

Definition 2.16: If V = V1 _l_ V2 satisfies the conditions of conclusion (2) of 

Theorem 1.1, we shall call it an a d m i s s i b l e  ( o r t h o g o n a l )  sp l i t t i ng  of V. If 

the extension K/F  with (K: F) -- r and the associated subgroup M of FL~ (qr) 

satisfies Conclusion (3) of Theorem 1.1, we shall speak of an a d m i s s i b l e  field 

e x t e n s i o n .  

If M stabilizes a K-linear structure of V there is an associated embedding of 

K into F. We denote this embedding by p(K), so that  M = CG (p(K)). 
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3. The  proof  of Theorem 1.1 

Throughout this section we assume that  G and the chain 

G = Mo D M =  MI D Ms D . . .  D M~. = {e} 

satisfy Hypothesis (**). We consider the possible structures of M. In the first 

two lemmas we treat  the case that  E ( M )  acts reducibly on V. We fix E = E ( M ) .  

LEMMA 3.1: Suppose V is induced as an ]F[M]-module. Then either V = 

V1 • V2 with (V1, f l )  isometric to (V2, f2) (here f{ = f[v, and f is the form 

associated to G), or there exists a maximal subgroup M* with e(M*) = s  

and V = W1 • W2 as an F[E(M*)]-module. 

Proof" Suppose not. According to Table 4.2.A from [15] we have V = V1 2 

�9 .. 2 Vs as Y[E]-module with s _> 3. For an arbitrary orthogonal decomposition 

U1 • . . .  _l_ Uk of V, we denote by N a ( { U 1 , . . . ,  Uk}) the subgroup of G which 

permutes the set {U1, . . . ,Uk}.  Similarly, C c ( { U 1 , . . . , U k } )  shall denote the 

subgroup of G that  fixes each of the Ui. By Corollary 4.2.2 of [15] we have 

Nc({V1 , . . . ,  Vs} ) /Ca({V1 , . . . ,  V~}) ~ Sym(s). 

If s = sl + s2 is a proper dyadic splitting, set 

(1) w1 =v~ •177 =%1+1 • 1 7 7  

Set Y -- NM({W1,  Wh}) and observe that  

Y / C a ( { V 1 , . . . ,  118}) - Sym(sl)  • Sym(s2). 

By Theorem 2.14, g(Sym(s)) = t (Sym(sl ) )  + g(Sym(s2)) + 1 and it follows tha t  

g(M) = g(Y) + 1. Set M* = N a  ({W1, W2}). As StabM(W~) acts imprimitively 

on W~ we have M* • M N M* = Y and so g(M*) _>/(M) and the result holds. 

Otherwise we may suppose s = 2 ~, r _> 2. Set 

(2) w1 = yl •  • y~, w2 = y~+l  •  • vs. 

Then W1 and W2 are isometric. By Theorem 2.14, 

(Sym 1, 
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and it again follows that  

g(M) = g (NM ({W1, W2})) + 1. 

Letting M* = NG({W1, W2}), we are done as before. II 

LEMMA 3.2: E acts irreducibly on V. 

Proof Suppose not. By Proposition 2.7, E r {1}. 

Suppose E stabilizes a proper isotropic subspace V1 of V. If  G is not of 

type L, Theorem 1 of [1] implies G is of type U, S or O + and V = V1 �9 V2 

with V1 --- V2 totally isotropic subspaces of V. Furthermore, M must contain a 

subgroup D of index 2 with D C P for some maximal parabolic subgroup P of G 

and L N F(P) = {1}. Then clearly ~(M) < e(P),  a contradiction. If G is of type 

L, then V = V1 |  G Vk as an F[E]-module. By Lemma 3.1 we may replace M 

by M* (if necessary) so that  V = V1 2 V2 as an F[E]-module. As above, there is 

a subgroup of index at most 2 and contained in a maximal parabolic subgroup 

of G, a contradiction. 

Now suppose E stabilizes a proper non-degenerate subspace of V. By Theorem 

1 of [1] together with an application of Lemma 3.1 (and replacement of M by M*, 

if necessary), we may assume V = V1 • V2 as an F[E]-module. Set dimF(Vi) = ni. 

As Conclusion (2) of Theorem 1.1 does not hold, we have G = fl~(V) and we may 

assume that  either nl  = n2 are odd or n and nl  are odd but nl  r 1. Then n _> 5 

and we may always assume that  nl  is odd and nl _> 3. Set Ni = S t a b M ( Y / ) .  

By induction, there exists, for ni odd and ni > 1, Li = StabN, ({Vii, V~2}) where 

Vi = Vii _l_ V~2, dimF(Vil) = 1 and g(Ni) = t(Li)  + 1. If  n is odd set 

w~ = Yn, w s =  Yxs • Y2 

and M* = StabG({W1,W2}). Then g(M*) _> g(M) and M* satisfies Theorem 

1.1(2), a contradiction. If n is even, set 

W l =  Yn • Y21, W s =  Y12 • Ys~ 

and M* = StabG({W1, W2}) (here V22 = {0}, if dimF(V2) = 1). Again we have 

a contradiction. I 
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Defnit ion 3.3: Let G = G(q) be a classical linear group of hyperbolic length 

with natura l  module V. 

(1) We say G is sp l i t  h y p e r b o l i c  if G has a longest subgroup M such tha t  

E ( M )  acts reducibly on V. 

(1) We say G tha t  G is n o n - s p l i t  h y p e r b o l i c  if 

(i) G is not split hyperbolic and there is a longest subgroup M of G such 

tha t  E ( M )  acts irreducibly but  not absolutely irreducibly on V; or 

(ii) G is of type GL~(p m) or O~(pm); or 

(iii) ~+(q) <_ G <_ O+(p m) (or the analogous projective groups) and 

neither subnormal  (S)L2(p m) subgroup has parabolic length; or 

(iv) G'  = [G, G] -- (S)L2(p), p e {5, 7, 11, 19, 29}. 

Henceforth we may assume tha t  if M* is any longest subgroup of G, then 

E(M*)  acts irreducibly on V. 

The  following result will be invoked in Section 4. For this reason we formulate  

it wi thout  the assumption tha t  G is a counterexample to Theorem 1.1. 

PROPOSITION 3.4: Suppose that G is a classical subgroup of  GL(V)  with E(G) 

quasisimple and V a vector space over the field F. Suppose that every proper 

classical subgroup of  G satisfies Theorem 1.1. Furthermore, suppose that G is 

non-split hyperbolic and that M is a longest subgroup of  G with M the stabilizer 

in G of  a K-linear structure on V for some proper field extension K of  F. Let 

G = Mo > M = M1 > ""  > Ms > . . .  > Mt = {e} 

be a chain with s = t. Then there exists a proper tower of  fields 

(t) oK1 c . . . c K 8  
such that Mi is the stabilizer in G of  a Y~-linear structure on V for 1 < i < s 

and one of  the following holds: 

(1) 
(a) E(G) = SL(V),  SU(V) (dim~(V) odd) or Sp(V), and 

(b) s = f~(n) and dimK s (V) = 1; and 

(c) s = 2~2(n) + fl([T[) where T = p(Ks) C3 G; or 

(2) 
(a) E(G)  = ~ - ( V )  with n = dimF(V) even; and 

(b) s = f t(n)  - 1 and dimKs (Y) = 2; and 

(c) f (G)  < 2f~(n) - 1 + a( lT[)  where T --- SO2(K8) = CVl (Ks) .  



Vol. 98, 1997 D.P. BROZOVIC AND R. M. SOLOMON 71 

Proof'. Suppose M~ and Ki are as described for 1 < i < s wi th  dimKs (V) = 1 

if E(G) is not or thogonal  and dimKs (Y) = 2 if E(G) is orthogonal .  If  E(G) = 

SU(V),  the results from Section 4.3 of [15] together  with our hypotheses  easily 

imply  dimF(V) odd. The  maximal i ty  of Mi in Mi-1 implies tha t  (Ki: Ki-1  ) = p~ 

is a pr ime divisor of dimK,_l (V). Thus s = 12(n) or gt(n) - 1. Moreover in the 

first case 

Ms = (GLI (Ks)  n G) :  (xs), 

where (xs) = Ga l (Ns /F)  = Zn. Thus  (b) and (c) hold in this case. I f s  = ~ t ( n ) - l ,  

then 

Ms = (O~(Ns) h a ) :  (xs), 

where again (xs) TM Gal(K~/F)  - Zn. Moreover it is clear from Section 4.3 of 

[15] tha t  ~ = - ,  E(G) = ~ - ( V )  and, as dimK~ (V) divides dim~(V),  n is even. 

Thus (2) holds in this case. 

Thus if the proposi t ion fails, then from Table 4.3.A of [15] we conclude tha t  

either E(Ms) is a quasisimple classical linear group or E(M~) = ~+(]Ks) (the 

case dimKs (V) = 2 with Ms of type  f ~  (Ks) having been t rea ted  above).  In the 

la t ter  case, by induction, we must  have s = 1, G = ~+~ (F) where (N: F) = r is 

prime. We shall e l iminate this case first. 

By L e m m a  2.9 and Table 3.5.E of [15], i f r  is odd, we may  assume G = O+~(F). 

Then  M = O+4(q~) �9 (x}, where (x) ~ Ga l (K/F)  = Z~. Moreover,  by Proposi t ion  

2.7(b), if Li <1 <~M with Li TM SL2(]K), then Li has hyperbolic length, whence 

g(Li) = ~(q~ + 1) + 2, where I]KI -- qL Thus by the s t ructure  of M, g(G) -- 
g(M) + 1 = 2~(q ~ + 1) + 7. Now consider the chain 

O~-(]K) �9 {xl} x O f ( N ) .  {x2) C O~-~(F) x O~-~(F) C O~-~(F) ~ Sym(2) C G, 

where (xi} ~- Gal (N/F)  ~ Z~. As O~-(]K) ---- Dq~+l, we see tha t  t (G)  _> 

2gt(q ~ + 1) + 8, a contradiction.  Finally, if r = 2 and G -- 12+(F), we see 

from 15.1.8 in [1] tha t  M is conjugate  via a tr ial i ty au tomorph i sm to M1 = 

Na({V1, V2}) where V = 1/1 _L V2 and V1 -- V2 has Wi t t  index 1. As t (M1) = 

g(M),  G is split hyperbolic,  cont rary  to assumption.  

Thus,  if Proposi t ion  3.4 fails, then E(Ms) is a quasisimple classical linear 

group. As Theorem 1.1 applies to E(Ms) by assumpt ion  and as G does not have 

parabol ic  length, Proposi t ion  2.7(c) implies tha t  E(M~) has a max imal  subgroup 

Ls with t(E(Ms)) = t (Ls)  + 1 and with (E(M~), L~) satisfying Conclusion (2) 
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of Theorem 1.1. Now let N~+I = NM,(Ls), so that  g(M,) = e(Ns+l) + 1 by 

Proposition 2.8. Then V = V1 I 172 as a K~[Ns+l]-module and this is an 

admissible K~-splitting of V. Now define Ni, 1 < i < s, to be Stabc({V1,172}) 

where the 17/are regarded as K~_ 1-spaces. Then we have a proper chain 

GDN1 D N2 D . - .  D N8 ~Ns+l 

with e(N~+l) = g ( G ) -  ( s+  1) and with N1 the stabilizer of an admissible splitting 

of the F-space V, contrary to assumption. | 

LEMMA 3.5: E acts absolutely irreducibly on V. 

Proof." Suppose not. Then by Lemma 3.2, M is the stabilizer of a K-linear 

structure on V with K a proper field extension of F. Now by Proposition 3.4, 

E(G) is one of SL(V), SU(V) (dim~(Y) odd), Sp(Y) or f~-(V) and there is a 

chain of stabilizers as described. In each case, it is clear that  there is a chain 

C*: G D M* _D-.. D {e} 

with M* an admissible field extension stabilizer and with g(C*) = g(G), contrary 

to assumption. | 

The next two lemmas treat  the case where E(M) acts tensor decomposably on 

V. They parallel Lemmas 3.1 and 3.2. 

LEMMA 3.6: Suppose V is tensor-induced as an F[M]-module. Then V = 171| 

with (V1, f l )  isometric to (172, f2) (here f = f l  | f2 is the form associated to G). 

Proof Suppose not. Then V = V1 | . . .  | 17, as an F[M]-module with s > 3. If  

s = sl + s2 is a proper dyadic splitting with Sl > s2, set 

(3) W1 = Vl @ ' " |  Vs,, W2 = Vsl+l |  Vs. 
i 

If  s = 2 ~, set 

(4) = | 1 7 4  = v +l | 1 7 4  v , .  

As in Lemma 3.1, we are done provided Staba(W/)  ~ StabM(Wi) for i = 1 or 2. 

As s > 2 and sl > 1, this is immediate if Stabv(W1) acts tensor indecomposably 

on W1. As dim~(Vi) > 2, this is true unless W1 is a 4-dimensional orthogonal 

space of maximal  Wit t  index and 17/is a 2-dimensional symplectic space for all 
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i. As Sl > s2, we are reduced to the cases G -= Sps(F ) and G = f~+6(~') wi th  

dim~(V~) = 2. 

I f  G ~ SPs(F),  then  by Proposi t ion  4.7.4 in [15], we have 

M - 2 .  ( (P  Sp2(q)) 3" 22) �9 Sym(3).  

However,  if V = U1 3_ U2 _l_ U3 _l_ U4 with dim~(Ui) = 2 and M* = 

S t a b a ( { V l , . . . ,  U4}), then  

M * ' ~ ( S  ( ))4 ( ) -- P2 q �9 Sym 4 

and g(M*) = g(M)  + 3, a contradiction.  Similarly if G = 12+6(F), then  by 

Propos i t ion  4.7.5 in [15], we have 

M ~- 2 .  ( (PSp~(q) )  4" 23) �9 Sym(4).  

On the other  hand,  if V = U1 3_ . - .  _l_ U4 with dim~(Ui) = 4 and U/ of 

m a x i m a l  W i t t  index for all i, and if M* = StabG({U1, �9 �9 �9 U4}), then  M* contains 

f l+(Vl )~Sym(4)  and as f~+(Vl) --- 2"((PSP2(q))2) ,  we easily have g(M*) > g(M),  

a final contradict ion.  | 

LEMMA 3.7: E acts  tensor indecomposably  on V .  

Proof: Suppose on the cont rary  tha t  V ~ V1 | V2 as an F[E]-module.  Let  

E = E I E 2  where Ei = f~(V~,fi), i = 1,2. By the results from Sections 4.4 

and 4.7 of [15], we m a y  assume tha t  E1 is quasisimple and if bo th  E1 and E2 

are quasis imple we m a y  assume tha t  n l  = dimT(V1) > n2 = dimF(V2). Let  

N = N M ( E 1 )  = N M ( E 2 ) ,  so t ha t  [M: N] < 2 with equali ty only if ( V l , f l )  is 

isometr ic  to (V2, f2). 

We shall first consider the case M ~ N and shall exhibit  a proper  subgroup  

H of G with  g (H)  > g(M) ,  cont ra ry  to g(G) = g ( M )  + 1. Let  m = dim~(V1) = 

dimF(V2), so t ha t  n = m 2. From Table 4.7.A in [15], noting t ha t  t = 2, we have 

m _> 3. I f  G -~ SLy2 (q), then  

M C_ (G1 * G2)" {x), wi th  G, -= GL~(q ) ,  {x) ~ Sym(2)  

and - I  E G I N G 2 .  As m 2 > 2m, G contains H ~ G L ~ ( q )  I S y m ( 2 )  act ing 

impr imi t ive ly  on a 2m-dimensional  subspace of V and g(H)  > g(M) + 1. Thus  

by Table  4.7.A from [15], we m a y  assume tha t  G ~- ~ 2 ( q )  wi th  e E {+ ,o} .  
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Suppose t ha t  E(M) = E1 * E2 with E1 - E2 -~ f~'m(q)" Then  by 4.7.6-4.7.8 

f rom [15], 

~(M) <_ ~(E(M)) + 6 

and e(M) = e(E(M)) + 2 if m is odd. Now 

e~ E G D H = (L1 I Sym(2))  x L2, with L1 = a ~ ( q ) ,  L2 ---- am~_2,~(q). 

Thus  e(H) - e(E(M)) ___ 1 + e(L2). I f  m = 3, then L1 --- a3(q)  - L2(q) and 

e (L: )  _> 4. If  m > 3, then  f~+(q) C_ L :  and so e(L2) _> 2/(L2(q)) + 1 _> 9. Thus  in 

all cases, f ( H )  > f ( M ) ,  a contradiction.  Thus  G = f~+ (q) and E(M) E1 * E2 m2 

with Ei ~ SPm(q), m _> 4, and with e(M) - e(E(M)) _< 2 by 4.7.5 of [15]. Now 

Spin(q) c Spin(q) * Sp2(q) c a+m(q) 

and so ~(f~+m(q)) -> f (Sp~(q) )  + 5. As m _> 4, we have m 2 > 4m and so 

G D H ~ f~+m (q) ~ Sym(2) 

and 

e (H)  _> 2e(SPm(q)) + 11 > e (M) ,  

a contradict ion.  

Thus  we have M = N,  i.e. E1 <1 M and E1 quasisimple. By  Proposi t ions  

2.7(c) and 2.8, there exists L1 C E1 with s ---- e(L1) + 1, e (M)  = s -q- 1, 

where N1 = NM(L1), and with either 

(a) V1 = Vll _1_ V12 is an admissible spli t t ing with  L1 = StabE1 ({Vll, VI~}); or 

(b) ]K1 is an admissible field extension of F and L1 stabilizes a Nl- l inear  

s t ruc ture  on VI. 

In case (a), N1 stabilizes the or thogonal  spli t t ing 

Y = U 1 .J_ U 2 ~-- (V i i  @ Y2) .J_ (Y12 @ Y2) , 

while in case (b), N1 stabilizes a Kl- l inear  s t ructure  on V. In any case, by 

the results  f rom Sections 7.1-7.3 of [15], the full stabilizer M* in G of such a 

s t ruc ture  is max ima l  in G. As N1 < M,  we have N1 < M* and so e(M*) _> g(M).  

Replacing M by M*,  we have reduced to a previous contradiction.  | 

I f  M is the centralizer of  a field au tomorph i sm of G we shall refer to M as a 

f i x e d  f ie ld  subgroup of G. I f  M is a subgroup of type  Cs from Theorem 1 of [1] 

(see also Section 4.8 of [15]) M shall be called a f i xed  f o r m  subgroup of G. 
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LEMMA 3.8: M is neither a fixed field nor fixed form subgroup of G. In 

particular, E cannot be represented over any proper subfield of F. 

Proo~ Suppose not. According to Tables 4.5.A and 4.8.A, either E is quasisimple 

of classical type over a (possibly proper) subfield F0 of F or G is type L4 and E TM 

~t+(q). In the latter case we have g(P) > g(M) where P is a maximal parabolic 

subgroup of G. Thus by Propositions 2.7(c) and 2.8, there exists M1 _C M with 

~(M) = ~(M1) + 1 and either 

(1) V -- U1 • U2 is an admissible splitting and M1 = StabM({U1, U2}); or 

(2) Eo is an admissible field extension of Fo with (Eo: F0) -- r and M1 is the 

stabilizer of a Eo-linear structure on U. 

In case (1), we may assume that  Ui = UNV/, where V = V1 • V2 is an admissible 

splitting and M* = StabG({V1, V2}) with M1 = M* ~ M. In case (2), we may 

assume that  K is a common extension of E0 and F with (K: F) = r and that  M* is 

an admissible stabilizer of a K-linear structure on V with M1 -- M* A M. Again, 

in either case, replacing M by M*, we have reduced to a previous contradiction. 

| 

Definition 3.9: Suppose E C_ gt(V) with E a quasisimple group of Lie type 

acting absolutely irreducibly on V over F, where IF[ = p~. Assume E -- E(p a) 

where pa -- ]Z(Xa)[ for Xa  a long root subgroup of E. If E is of twisted type, let 

v be a non-trivial graph automorphism defining E (as fixed points of a twisted 

Frobenius endomorphism of an algebraic group over the algebraic closure of Fp). 

(a) Set 

-5= / c i f ~ # S U ( V ) ,  

( 2c ifgt = SU(V). 

(b) Set 
= / a if ~t is untwisted or V - V ~, 

[ a. ]7]  i f F t i s t w i s t e d a n d V ~ V  ~. 

LEMMA 3.10: E = E(p a) is a quasisimple group of Lie type acting absolutely 

irreducibly and absolutely tensor indecomposably on V, with ~ = -5 (-5, c, -5 as 

defined above). 

Proof: By Lemmas 3.5 and 3.7, E acts absolutely irreducibly and tensor indecom- 

posably on V. Thus by Theorem 1 of [1], E is quasisimple and Z(M)  = Z(G). 
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Now by Proposition 2.7(b), E = E(p a) is a quasisimple group of Lie type in 

characteristic p and, by Lemma 3.8, the representation cannot be written over 

any proper subfield of F. We adopt the notation of Definition 3.9. In particular, 

IF I = p~ and ~ is as defined above. 

Suppose the lemma is false. Then by Corollary 6 of [20] we have r -- ~/~ > 1 

and M -- Na (Zm (pa~ )), where 

(1) Zm(p al) �9 {SL(m, pa~),SV(m, pa~),Sp(m, pa'),fle(m, pal)}; 

(2) n = m  rl w i t h r l � 9  r, iTi a n d r l  >1 ;  

(3) al [ r lc ,  r l c [ a .  

Set G = G/Z(G), M = M/Z(G) and E = (E , Z(M))/Z(M).  Then g(M) + 1 = 

g(G) and by Theorem 1 of [1], E <1 M _< Aut(E).  Let InnDiag(E) denote the 

group of inner-diagonal automorphisms of E and Y = InnDiag(E) N M, so Y 

embeds in PGL,~(pal). An application of Steinberg's tensor product theorem (see 

Proposition 5.4.6 of [15]) shows that M can induce a group of field automorphisms 

of order at most r l  or 4rl according to whether E = Zm (p~) is untwisted or 

twisted. In either case we have 

t (M)  _< t(Y) -t- ~ ( r l )  + 2. 

From the containment PGLm(p r~'~). Z~ C PGLm.~ (p~) we conclude 

(5) g(M) _< g(PGLm.~ (p~)) + 1. 

NOW G = ~'mrl (pC), where J �9 {SL, SU, Sp, ~ }  and 

GL . I c__ 

and so Eq. (5) together with M a longest subgroup of G forces n -- m ~1 < 2mrl .  

As rl  > 1, this reduces easily to the cases: 

(i) m - -  2, n �9 {4,8,16}, or 

(ii) m = 3 ,  n = 9 ,  or 

(iii) m -- 4, n -- 16. 

The case m = 2, n = 4 corresponds to L2(q 2) = ~ ' ( q ) .  The case m = 2, n = 8 

yields the embedding (see [14]) 

SP2(q3) �9 (~1) _< SPs(q), where (~) ~ Gal (Fq3/Fq). 

However we have Sp2(q3) �9 (V) < Sp6(q) < Sps(q) and so g(M) < g(G) - 1, a 

contradiction. The case ra = 2, n = 16 yields the embedding 

PGL2(q4) " 07) -< ~i6(q), (~) ~ Gal (Fq4/Fq). 
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Now PSL2(q 4) -- ~4(q  2) C f~s(q) C 12~o(q) and so ~(M) < ~(G) - 1 again. 

If m = 3, n = 9, we have (according to [14]) the embeddings L3(q 2) C_ Lg(q) 

and L3(q 2) C_ Ug(q). In the first case, we have H - GL6(q) C_ G with i (H)  > 

e(M). In the latter case G has a maximal parabolic subgroup P with Levi factor 

L containing SL3(q 2) and so g(P) > t (M).  Thus we have a contradiction in both 

cases. 

Finally, if m -- 4 and n = 16, we have E C_ SL4(q 2) with g(M) - t (E)  < 3. As 

FSL4(q 2) ~ ~6+(q 2) C ~l+2(q) C fl+(q) • ~ ( q )  C ~6 (q ) ,  

we immediately have g(M) < e(G) - 1, unless G --- Spl'6(q). In that case, we have 

GL4(q 2) C GLs(q), the Levi complement of a maximal parabolic subgroup of G, 

a final contradiction. | 

LEMMA 3.11: E is not a classical//near group. 

Proo~ Suppose not. By Lemma 3.10, ~ = 5. Set h = a or 2a according to 

whether E is twisted or untwisted. As E cannot be represented over any proper 

subfield of F, an application of the Steinberg tensor product theorem implies that  

M can induce only those field automorphisms in Gal(Fpa/FB~ ) _< Z2. Arguing as 

in the proof of Lemma 3.10 we conclude 

~(M) <_ g(PGLd(pa)) + 3, 

where d is the dimension for the natural module for /~ (where E,/Z(E) = E). 

Observe that  for each ,7 E {SL, SU, Sp, ~ } ,  there is a maximal parabolic sub- 

group P of ,72d+l(q), the Levi factor of which contains a subgroup of index 2 in 

GLd(pa). Thus 

g(P) > t(PGLd(p~)) + 3 > ~(M), 

and so we conclude n _< 2d. Moreover, if n = 2d, G = ~2d(q) and E ~ gt~(q). 

Using Proposition 5.4.11 of [15], we arrive at the following list of possibilities: 

(i) E = L2(q) with dim~(V) = 3 or 4, 

(ii) E = L~(q) with dimF(V) = 6, 

(iii) E = L~4(q) with dimF(Y) = 6, 

(iv) E = L~(q) with dimF(Y) -- 10, 

(v) E = gtT(q) with dimF(Y) = 8, 

(vi) E = ~ o ( q )  with dim~(V) = 16. 
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As f~4 (q) ~ L2(q2), we may discount the case (L2(q), fl4(q)). We may likewise 

discount the case L~4(q) ~- P ~ ( q ) .  In the other L ~ cases, we see from Proposition 

5.4.11 of [15] that  G - SLy(q) and we conclude that s > g(M) + 1. Finally, 

when E -- ~ (q), the representation is the spin representation and by Proposition 

5.4.9 of [15], the possibilities for E and G are 

(a)  E = c = 

(b) E = gt+0(q), a = SL16(q), 

(c) E = C = 

If (a) holds, Proposition 2.2.4 of [13] shows that E = M is conjugate via a 

triality automorphism to a reducible subgroup of G. If either (b) or (c) hold, 

E = gt~o(q ) C SL~6(q ) and so g(G) > g(M) + 1, a final contradiction. II 

PROPOSITION 3.12: 

(1) Let L = G2(q) and let L _< X < Aut(L) with gcd(q, 3) -- 1. There exists a 

10ngest subgroup Mo of X with either Mo N L a maxima/parabolic subgroup 

of L or Mo ~ L ~- SL~(q).Z2, c = • 

(2) Let L =304(q) and let L <_ X <_ Aut(L). There exists a longest subgroup 

Mo of X with either Mo N L a maxima/parab01ic subgroup of L or one o f  

Mo A L ==- (SL2(q 3) , SL2(q)). Z2, or 

Mo n L - (Zq~+~q+l) 2- SL2(3), e = • or 

Mo N L = ~ ( Z q 4 ~ _ q 2 ~ _ l )  �9 Z 4 

(a)  

(b) 

(c) 

Proof This follows from Theorem A of [11] and the main theorem of [12]. 

LEMMA 3.13: E is an exceptional group of Lie type of Lie rank at least 4. 

Proof: Suppose not. Then, as p > 3, we have E = G2(q) or E -- 3D4(q). First 

suppose E = 3D4(q). By Proposition 3.12, we may assume that  Mo is of type 

(a), (b), or (c). In particular, F*(Mo) cannot act both absolutely irreducibly 

and tensor indecomposably on V. Using the main results of [i], M0 is properly 

contained in a maximal subgroup M* of G acting absolutely reducibly or tensor 

decomposably on V. We are thus reduced to a previous case. 

Now suppose that M = E = G2(q). Then by Proposition 3.12, we may assume 

that M0 - SLy(q) �9 Z2. It is well known (see [10]) that  if dimF(V) _ 14, then 

dim~(Y) = 7 and we have G = f~7(q). As f~7(q) c 2"(Y) whenever dimF(Y) > 14, 

we may certainly assume that G = ~7(q). Now if P is the stabilizer in G of a 

maximal isotropic subspace of V, then the Levi complement of P is isomorphic 
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to a subgroup of index 2 in GL3(q). Also there exists a stabilizer N of a non- 

isotropic line with N'  ~ ft6(q ) ~- Z2" U4(q). Now clearly either l (P)  > g(M) or 

~(N) > ~(M), a contradiction. | 

PROPOSITION 3.14: Let F, -- E(F) be a simple adjoint algebraic group of type 

F4, E6, E7 or Es (where F is the algebraic c/osure o f f  = Fp~ ). Suppose a is a 

Frobenius endomorphism ft, with E -- E(p a) = OP' (fi, o) a simple group of Lie 

type. Suppose further that E C G with G a quasisimple classical linear group 

which is a minimal counterexample to Theorem 1.1. Then there exists a longest 

subgroup Mo of fi, o satisfying one of the following: 

(1) M0 = Nt~" (Do) where/9 is a parabolic subgroup of E; or 

(2) M0 = Nk~ (Do) where D is reductive of maximal rank in IF. 

Furthermore, there exists no non-trivial F[E]-module on which E(Mo) acts 

absolutely irreducibly and tensor indecomposably. 

Proof." Suppose neither (1) nor (2) hold. According to Theorem 2 of [17], a 

longest subgroup M0 must be of one of the following forms: 

(a) F*(Mo) is simple; or 

(b) M0 is the centralizer of a graph, field or graph-field automorphism of 

O # (/~o) of prime order; or 

(c) F*(Mo) is as in Table III of [17] and F*(Mo) = OP'(Xo) where Z = X ~ is 

as in the last column of Table II of [17]; or 

(d) /~ = Es(F) and F*(Mo) is either Alt(6) x Alt(5) or Alt(6) x'PSL2(pa); or 

(e) Mo = Nk~ (A) where A is an elementary abelian group given in Theorem 

l(II) of [8]. 

Since E has hyperbolic length, Lemma 4.2 and Proposition 4.3 of [4] imply that 

there is no longest subgroup M0 of type (d) or (e). 

Suppose M is a longest subgroup of E of type (c). For each choice of F*(M),  

one can easily show that there exists a subgroup M0 of maximal rank in E 

with g(M0) > s We present a representative case, the others being entirely 

similar. 

Let E = F4(q), q = p~ and suppose M is a longest subgroup of E with 

F*(M) = G2(q) x L2(q). As M can induce no non-trivial field automorphisms 

on F*(M),  we have 

(6) / (M) _< 1 + g(G2(q)) + t(L2(q)). 
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Since E has hyperbolic length (since (1) does not hold), Theorem 3.1 of [2] implies 

that  each simple component of F*(M) has hyperbolic length. Thus by Lemma 

4.1 of [4] together with Theorems A and B of [11], a longest chain in G2(q) passes 

through one of the following groups: 

(i) SL3(q): 2; 

(ii) SU3(q): 2; 

(iii) (SL2(q) * SL2(q))- 2; 

(iv) G2(ql/r), r a prime. 

Suppose (i) or (ii) holds, so Eq.(6) becomes 

g(M) _< 3 + g(SL~(q)) + g(L2(q)), 

e = =t=l. According to Table 5.1 of [16], there is a subgroup Mo of maximal rank 

of the form 

Mo = (SLy(q) * SLy(q)) �9 Z(3,q_~) �9 2. 

Then 

g(Mo) - g(M) >_ g(SL~(q)) - 2 - t(L2(q)) > O, 

as desired. 

Next suppose (iii) holds, so g(M) <_ 4 + 3g(L2(q)). We choose Mo from Table 

5.1 of [16] of the form 

2 2. P~+(q) .  Sym(3). 

In Pf l+  (q), there is a maximal parabolic subgroup with a Levi factor containing 

three copies of L2(q), so trivially we have g(Mo) - g(M) > O. 

Suppose (iv) holds. Inside G2(ql/r), a longest subgroup must be of type (i)- 

(iv), and so we must eventually encounter a subgroup of type (i)-(iii) in some 

G2(ql/z), z = r l r2 . . . r t ,  r = rl, ri (not necessarily distinct) primes. In particu- 

lar, 

g(G2(q)) = t + g(X(ql/Z)), 

where X(q  1/z) is a group of type (i)-(iii) defined over the subfield of order ql/~. 

In each case, choose Mo as before Then we easily see that g(Mo) > g(M). 

Suppose M is a longest subgroup of E of type (b). If F*(M) is of the same 

type as E, then by induction we may assume that  a longest subgroup of M1 of M 

is reductive of maximal rank. Clearly M1 < Mo, where Mo is the corresponding 

subgroup of E and again we are done. 



Vol. 98, 1997 D.P. BROZOVIC AND R. M. SOLOMON 81 

Thus by [19] we may assume that E ~ E~(q) and F*(M) is isomorphic to 

2E6(Fo) (e = +1), C4(Fo) or F4(Fo). Suppose F*(M) ~ C4(Fo). Again by in- 

duction we may assume that a longest subgroup M1 of M is reductive of maximal 

rank in M. By inspection of Tables 5.1 and 5.2 of [16], we see that g(M1) < g(M*) 

with M* reductive of maximal rank in G. The only subtle case is: 

E(G) ~- E6(q2), E --2E6(q), E(M1) ~- SL3(q 2) x SL3(q). 

Then E(M*) ~ SL3(q 2) �9 SL3(q 2) �9 SL3(q2). 

Finally we have E ~- E~(q), F*(M) ~- C4(F). Now [M: F*(M)] = 2. By 

Lemma 3.13, Theorem 1.1 holds for C4(F) ~ P S P s ( F  ). Thus we may assume 

that a longest subgroup M1 of M satisfies one of: 

(i) F*(M1) ~ SP2(F ) * SP6(F ), or 

(ii) F*(M1) ~- SP4(F ) * SP4(F), or 

(iii) F*(M1) ~ PSp4(K ) with (K: F) = 2. 

In case (i), M1 C_ 1~/~ with F*(A:/*) ~ SL2(F) * L~6(F), where L~6(F) is a 2-fold 

cover of PSL~(F). In cases (ii) and (iii), M1 C_ )th/~ with E(IQ ~) -~ Spin~o(F ). We 

remark that SP4(F ) ~- Spinh(F ). In all cases, M1 < hT/r and hh/~ is reductive of 

maximal rank. 

It remains to treat case (a). By Theorem 3 of [17] together with Corollary 4 

of [18], one of the following holds: 

(i) F* (M) = O p' ( /~),  where 6 is a field or graph-field automorphism of/~; or 

(ii) F*(M) = OP'()( ,) ,  where X is as in the first column of Table II of [17]; or 

(iii) F*(M) = L2(K), where K is some field of characteristic p with p <_ 113 if 

E -- Es(q), p _< 67 if E -- E7(q), and p < 43 if E = E~(q) or F4(q). More- 

over, the embedding of F* (M) does not lift to an embedding of algebraic 

groups. 

Note that  the groups of type (i) have already been treated in case (b) above. 

In case (ii), we easily reduce to the case in which F*(M) = F4(q) or C4(q) in 

E = E~(q), both of which were treated in case (b) above. 

It remains to treat case (iii). Suppose M is a longest subgroup of E with 

F*(M) = L2(K). By Zsigmondy's Theorem (5.2.14 of [15]), there is a prime 

divisor r of p~a § 1 which does not divide p'~ - 1 for any m < 2ka. Hence by the 

order formula for E, we have that k <_ 6 for E e {F4(q), E6(q)} and k _< 9 for 
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E =2E6(q). As F*(M) must have hyperbolic length, we have 

g(M) <_ 1 + ~(ka) + g(L2(p~k)) 

= 2 + gt(ka) + ~(pak -k 1) 

< 2 + ~(k) + a + ~(pak + 1) 

_< 5 + a + gt(p~k + 1). 

(7) 

For E �9 {F4(q), E~(q)}, we have 31 < p < 43 and we use 

~(pak + 1) = E gts(p ak + 1) 
8 

5 

_< E a ~ ( p  ~k + 1) + lOgT(p ~k + 1) 
s~2 

5 

_< + 1)+2ka. 
8 ~ 2  

Then using Table 1 and the remark that ~s(n) _< n/s,  we have 

~(p~k + l ) <_ 2ka + max { 3 + a--k3 , 5 } . 

Thus for E �9 {F4(q), E~(q)}, Eq.(7) becomes 

i (M)  _< max 

_~ m a x  

{ 7 } 
8 + a + -~ak, 10 + 2ak + a 

{8 + 22a, 10 + 19a}. 

Since p > 3, ~(pa _ 1) > 2 and so 

ib(E) >_ 1 + l~(p a -- 1) + 24a 

_> 12 + 24a 

> max {8 + 22a, 10 + 19a} 

> ~ ( i ) ,  

where l is the rank of E, a contradiction in all cases. 
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Table 1. f~(p~ + 1) for small primes r,p 

H P II r = 2  r = 3  r = 5  

31 5 if n odd 0 0 

1 if n even 

37 1 2 + ~3(n) if n is odd 1 + gtb(n) if n~-2mod4 
0 if n is even 0 otherwise 

41 1 1 + ~3(n) if n is odd 0 
0 if n is even 

4 3  2 if n is odd 0 2 -~ ~ 5 ( n )  if n ~ 2 m o d 4  

1 if n is even 0 otherwise 

Finally, if E e {ET(q),Es(q)}, we may use the cruder estimate that  

~(pak +1)  < aklog2(p). For E = E7(q) we have k < 9 an d p  _< 67 and this yields 

~(M) <_ 5 + a(1 + klog2(p) ) < 5 + 60a < gb(E), 

a contradiction. For E = Es(q) we have k ~ 15 and p <_ 113, whence 

~(M) < 5 + a(1 + klog2(p)) < 5 + 106a < ~b(E), 

again a contradiction. Thus the first part of Proposition 3.14 is established. 

Now suppose that a longest chain in E is supported by M0 = NE~ (/9o) where 

is reductive of maximal rank in /~. Let V be a non-trivial F[E]-module on 

which E(Mo) acts absolutely irreducibly and tensor indecomposably. Lift the 

embedding E(Mo) < E <_ I(V) to b_<  E <_ I ( V |  As /9 is reductive of 

maximal rank and p ~ 2, the Main Theorem of [27] yields a contradiction. | 

LEMMA 3.15: E is not an exceptional group of Lie type. 

Proof Suppose not. Since Z(G) = Z(M),  we may reduce modulo Z(G) to obtain 

~(G) = ~(2V/) + 1, with /~ = EZ(M)/Z(M) a simple exceptional group of Lie 

type of rank at least 4 (by Lemma 3.13). As/~ cannot be represented over any 

proper subfield of F, an application of the Steinberg tensor product theorem 

shows t h a t / Q  can induce, at most, a field automorphism of order 2 on E. Thus 

e(JV/) <_ ~(/~) + 3. Since/~ is subnormal and quasisimple, it must have hyperbolic 

length. Thus by Proposition 3.14 there is a longest subgroup M0 of/~ of maximal 

rank such that  3//0 does not act both absolutely irreducibly and absolutely tensor 

indecomposably on V. Now/~ is one of F4(q), E~(q), ET(q), or Es(q). In addition, 
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the degree of a minimal module for/~ in the natural characteristic is, respectively, 

26, 27, 56 or 248. One may now inspect Tables 5.1 and 5.2 of [16] and in each 

case note that  G contains a subgroup M* with g(M*) >_ g(Mo) + 4 and which 

does not act both absolutely irreducibly and absolutely tensor indecomposably 

on V. As g(M*) > g(M), we have reduced to a previous contradiction. | 

Now Lemmas 3.13 and 3.15 contradict each other, completing the proof of 

Theorem 1.1. 

4. T h e  p r o o f  o f  T h e o r e m  4,4 

The key to all finiteness results for groups of hyperbolic length is the following 

asymptotic lemma of Turull and Zame. 

LEMMA 4.1: Let p be a prime. Then 

lim ~ ( p m _  1) _ 0. 
rn~oo m 

Thus there exists C = C(p) such that f~(p2r _ 1) _< Cr for all r. 

Proo~ The first statement is Theorem A of [29]. It follows that there exists 

R = R(p) with f~(p2r _ 1) _< r for all r _> R, Let 

C = C ( p ) =  max f~(p2r_ l). 
I < r < R  

Then clearly f~(p2~ _ 1) _< Cr for all r < R. | 

We now apply Proposition 3.4, in conjunction with Lemma 4.1 to non-split 

hyperbolic groups (see Definition 3.3), yielding 

PROPOSITION 4.2: Let p > 31 be a prime and G = G(p TM ) a non-split hyperbolic 

classical subgroup of GLn (p~) where ~ is as in Definition 3.9. Then there exists 

a maximal torus T of G satisfying each of the following: 

(1) Either T = S N G where S is a Singer cycle ofGL,~(p ~) or E(G) = ~+(pm) 

and T is a subgroup OfZp,,+l x Zp-~+I; 

(2) 

l(G) < ! 2f~(n) + f~(tT[) irE(G) # f~+(pm), 

[ 5 + s2(ITI) irE(G) = a4+(pm); 
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(3) 
f 2f/(n) + fl(p m -  1) irE(G) r fl+(pm), 

l(G) < 

1 1 + 2fl(p 2m - 1) irE(G) = fl+(p'~); 

(4) there exists K = K(p) such that 

~(G) < K m  (n - ~ ) . 

Proof: Let C(p) = C be as in Lemma 4.1 and let 

K = K(p) = 2C(p) + 4. 

The result is easily checked for all cases where E(G) is not quasisimple. When 

E(G) is quasisimple, we may invoke Proposition 3.4 to conclude that  g(G) < 

2~(n) + f/([TI), where T = G N S for S a Singer cycle of GL~(p m) of order 

pmn _ e. AS fl(n) < n, we have (by Lemma 4.1) 

g ( G ) < 2 n + C m n < _ ( C + 2 ) m n = K m 2 < K m ( n - ~ )  

and we are done. | 

We now extend Proposition 4.2 inductively. 

LEMMA 4.3: Let p be a prime and G = G(p m) a group of hyperbolic length 

with natural module of dimension n over F = Fv~-. There exists K = K(p) such 

that 

4) 
Proof: By Theorem 1 of [25] and Theorem 1.1 of [5], we may assume that  p >_ 31, 

as there are only finitely many groups of hyperbolic length in characteristic p, 

p_< 29. 

We proceed by induction on n and let K be as in Proposition 4.2(4). By Propo- 

sition 4.2, we may assume that  E(G) is quasisimple and G is split hyperbolic. 

Thus f(G) = ~(M) + 1, where M stabilizes an admissible orthogonal splitting 

V = V1 J- V2. Set nj = dim~(Vj) and let Zj denote the full group of isometries 

induced by M on Vj, j = 1,2. For each j = 1,2, either Zj is split hyperbolic or 

E(Zj) is quasisimple. In the latter case, Proposition 2.7 implies Zj has hyperbolic 
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length. Now by induction, we have 

e(G) = 1 + e(M) _< 1 + 1 + e(Z1) + e(Z2) 

< 2 + Km (nl - ~ ) + Km (n2-  ~ ) 

=2+ Km(n  - 1 )  - ~ K m  

~ _ K m ( n - ~ ) ,  

noting that  C(p) > f~(p2 _ 1) _> 3 (for p r 2) and so K = 2C + 4 > 8. The proof 

is now complete. | 

We are now ready to prove Theorem 4.4. 

THEOREM 4.4: For each prime p, there are only finitely many (possibly O) finite 
Lie type groups G in characteristic p with G of hyperbolic length. 

Proof'. According to Theorem A of [25], there exists M = M(p) such that  G = 

G(q) is of hyperbolic length only if q <_ pM. In particular, there can be at most 

finitely many exceptional groups in characteristic p of hyperbolic length. Now 

assume G is classical of dimension n over ~'q with q = pm <_ pM. By Lemma 4.3, 

there exists K = K(p) with 

s <_ KnM 

for all such G. On the other hand, 

e(G) >_ logp(lGlp ) >_ ~ ~ -1  > --~. 

Hence n2/6 < g(G) <_ CnM, i.e. n < 6CM. So any classical group G in char- 

acteristic p of hyperbolic type has natural  module of dimension n < 6C(p)M(p) 
and has field of definition Fq with q = pm <_ pM(p). There are only finitely many 

such groups and, given the previous remark about exceptional groups, this proves 

the theorem. | 

5. Length formulas 

In this section we prove the following bound on the length of a classical linear 

group. This answers a question of L. Finkelstein. 
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THEOREM 5.1: Let G = Z(n, q) be a classical matrix group with minimal field 

of definition Fq where q = pro, q > 11. Suppose further that G is a split BN-pair 

of rank r(G) with B = UH = NG(U), U e Sylp(G) and H a Cartan subgroup of 
G. Then one of the following holds: 

(i) r(G) + logp([U[) + 12([H[) _< s _< r(G) + logp([U[) + log2([g[); or 

(ii) E(G) �9 {SV2(p), ft3(p), SP4(p ), t2+(p), fl5(p)} for p a Mersenne prime. 

Remarks: (1) By a Cartan subgroup we mean a conjugate of the (abelian) group 

of diagonal matrices of G. 

(2) For subgroups of PGLn (q), an analogous result holds (with H replaced by 

its image in PGLn(q) and with suitable adjustments to the list given in (ii)). 

(3) Since SL2(p) ~ SP2(p ) ~ SU2(p), SL2(p) and Sp2(p ) also fail to satisfy (i). 

For the possibilities of E(G) listed in (ii), all groups between E(G) and the full 

isometry group fail to satisfy (i). However, in the case of SL2(q) _< G < GL2(p), 

G fails to satisfy (i) if and only if [G: SL2(p)] <_ 2. 

(4) As O+~(q) is not a split BN-pair with respect to B = NG(U), our hypotheses 

force G _< SO+=(q). 

(5) The left hand side of (i) is simply the Borel length of G, i.e. the length of a 

chain in G which is "longest" subject to passing through B. Thus the left hand 

inequality is obvious. We shall refer to the right hand side of (i) as L(G). Thus 

we nmst prove that s <_ L(G) except in case (ii). 

(6) If p < 29, G has Borel length except for q �9 {2, 3, 5, 7, 11, 19, 23, 233, 29} 

(by Theorem 1.2 of [5]), so by the previous remark (i) is immediate except in 

these cases. For q < 11, the exact length (in terms of the Borel length) may be 

found in [6]. In all cases, 

t(G) < L(G) + )~(q) [r(G)2+ 21, 

where A(q) = 2 for q = 7, 11 and A(q) ~- 1 otherwise. 

We now proceed with the proof of Theorem 5.1 via a series of lemmas. 

LEMMA 5,2: Suppose that G has parabolic length and every classical component 

of the Levi complement of every maximal parabolic of G satisfies (i). Then so 

does G. 

Proof." Let P = QL be a maximal parabolic with ~(G) = g(P) + 1 and with 

Q = Op(P), L a Levi complement of P.  The Cartan subgroup H of G is also the 
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Caxtan subgroup of L. Also r (G)  -- r(L) § 1. Thus by hypothesis 

e(G) = e(P) + 1 

<_ r ( i )  + 1 + logp(l/Ip ) + logp(IQ]) + log2(IH]) 

= r(G) + logv([G[p) + log2([H[) 

= L(G), 

as desired. | 

PROPOSITION 5.3: Theorem 5.1 holds for p < 29. 

Proof." By Remark  (6), we are done unless q C {2,3, 5, 7, 11, 19, 23, 233, 29}. In 

this case, Theorem 1.3 of [6] gives precise formulas for g(G(q)). Using these, one 

checks tha t  (i) holds for q > 11. | 

LEMMA 5.4: Let p be an odd prime. Then f~(p+ 1) > log2( p -  1) if  and only ifp 

is a Mersenne prime. Thus if the simple composition factors of G are isomorphic 

to PSL2(p),  then e(G) <_ L(G) unless p is a Mersenne prime. 

Proo~ I f p  is a Mersenne prime then ~ (p  + 1) = log2( p + 1) > l o g 2 ( p -  1). 

Suppose next  tha t  p is not  a Mersenne prime and ~ ( p +  1) > log2( p -  1). Since 

p + 1 r 2 k, we have log2( p + 1) > f~(p + 1) > log2(p - 1) and so 

log2( p + 1) - log2( p - 1) > log2( p + 1) - ~ (p  + 1). 

Since p + 1 = 2km with m > 1 odd, 

log2( p + 1) - f~(p + 1) = log2(m ) - f~(m) _> log2(m ) - log3(m ). 

The  funct ion f (m)  = log2(m ) - log3(m ) is strictly increasing and positive on 

[3, cr and so 

( p + l ~  
l~ \ p  _---Z~] > l~ + 1) - ~ (p  + 1) > log2(3 ) - 1, 

which holds only when p < 5. This leaves p = 3, a Mersenne prime. 

Finally, if G = PSL2 (p) we may assume G is non-split hyperbolic.  Therefore 

g(G) -- 1 + f~(p + 1) _< 1 -b log2(p - 1) = L(G) 

if and only if p is not a Mersenne prime. | 
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LEMMA 5.5: Suppose G is of non-sprit hyperbolic type. Then g(G) <_ L(G) un- 

less p is a Mersenne prime and the simple composition factors of G are isomorphic 

to PSL2 (p). 

Proo~ We shall make use of the following (which are easily verified): 

(i) ~2(n) < n/2. 

(ii) log2(n + 1) < log2(n ) + 1 for all n > 1. 

(iii) log2(n + 1) - log2(n ) = log2(1 + ~) < �89 for n > 3. 

Suppose first tha t  G = GL~(q) or GU~(q). By Proposition 4.2 

g(G) < 2~(n) + log2(q ~ + 1) < 2fl(n) + nlog2(q) + 1. 

On the other hand, as q > 3, 

L(G) > ~(q) n ( n -  1) 
- 2 

Thus if the result fails, then 

n - 1  n 
- -  + 2 + nl~ 2" 

n(q) n(%- 1) z 
2~(n) > 2" 

As ~(n)  _< n/2, we have n = 2 and so G = GL2(q). But then 

and 

1 
L(G) _> fl(q) + 1 +  21og2(q ) 2 

g(G) = 2fl(2) + 2~(q 2 - 1) < 2 + log2(q ). 

Thus fl(q) = 1, i.e. q = p and we are done by Lemma 5.4. 

As G is non-split hyperbolic, it remains to consider the cases G = SO+(q), 

q # p ,  G = SP2~(q), n > 2, a n d G  = O~n(q ), n > 3. I f G  # SO+(q), then 

Proposit ion 4.2 implies 

g(G) < 2fl(2n) + ~(qn + 1) < 2~(2n) + n log2(q) + 1. 

On the other hand, as q > 3 

n 
L(G) >_ ~ ( q ) n ( n -  1) + ( n -  1) + nlog2(q) 2" 

Again, if the result fails, then 

n 
2fl(2n) > ~(q)n(n - 1) + ~ - 2. 
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Using f2(2n) < n, we immediately get n < 3 and, using f2(6) = 2, we get n = 2. 

Then G = SP4(q ) and in fact, for q > 3, 

L(G) _> 4~(q) + 2 + 21og2(q ) - 1 

and we have 

g(G) = 2fl(4) + fl(q2 + 1) _< 5 + 21og2(q) _< L(G), 

as desired. 

Suppose next that G = SO+(q), q ~ p with G non-split hyperbolic. Then 

g(G) = 2 + 2g(PSL2(q)) = 4 + 2ft(q + 1) 

_< 2f~(q)+ 2 log2( q + 1) 

_< 212(q) + 2(log2( q - 1) + 1) 

= L ( G ) ,  

which completes the proof. | 

LEMMA 5.6: Theorem 5.1 holds unless q is a Mersenne prime. 

Proof: Suppose not. By the above we may assume that  p _> 31 and that  G is a 

minimal counterexample and G is of split hyperbolic type. Then G has a longest 

subgroup M which contains a subgroup E of index 1 or 2 acting on an orthogonal 

decomposition V = 171 _1_ V2 of the natural module V for G. Suppose that  G is 

not S O +  (q) with 1/'1 isometric to 1/2 Then we may take E -- E1 • E2 with either 

Ei = SO+(V/) or Ei = 2"(Vi) # O(V~), where Z(Vi) denotes the full isometry 

group of Vi. Thus induction applies to Ei. If G = S O +  (q) with V1 isometric to 

112, then E has a subgroup E1 x E2 of index 2 with E1 = SO~n(q) = E2. Let 

1 i f G  = SO4+n(q) and 
5 = 111 isometric to V2, 

0 otherwise. 

Then by induction we have 

g(G) _< g(E1) + g(E2) + 2 + 5 <_ L(E1) + L(E2) + 2 + 5. 

The following facts are critical and are easily checked. 

(1) r(G) >_ r(E1) + r(E2). 
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(2) r(G) >_ r(E1) + r(E2) + 1 in the following cases: 

(a) G of type GU2n, E1 of type GU2m+I, E2 of type GU2~+I, 

(b) G of type 02n+1, E1 of type O1, E2 of type O~-~, 

(c) G of type SO+,  E1 of type 02m , E2 of type O~.  

(3) A Cartan subgroup of E is contained in the Cartan subgroup H of G, 

except in precisely the three cases listed in (2). 

(4) Suppose that  a Cartan subgroup H0 of E is not contained in H. Then 

log2(IHol ) - log2(IHI) < log2( q + 1) - log2( q - 1) _< 1 for q _> 3. 

(5) logp(IGIp ) >_ logp(IEIp ) + 2 unless the simple composition factor of G is 

PSL2(p). 

(6) logp(] SO+~(q)lp) > logp([E[p) + 3, unless n = 1 and q = p. 

Facts (1)-(4) yield: r(E1)+r(E2)+log2(IHol) < r(G)+log2(IHI) where H0 is a 

Cartan subgroup of E. Then using (5) and (6) and recalling that we have already 

handled the case where the simple composition factors of G are isomorphic to 

PSL2 (p), we conclude that 

L(G) >_ L(E1) + L(E2) + 2 +/~ _> g(G), 

completing the proof. | 

We have now reduced to the case where q -- p is a Mersenne prime. We shall 

need the following sharper bound. 

LEMMA 5.7: Let G = GL~(q) where q = p or p2 with p a Mersenne prime and 
1 p >_ 31. Then L(G) >_ g(G) + g. 

Proo~ Suppose G has hyperbolic length. By Theorem 1.1, G must be non-split 

hyperbolic, and so by Proposition 3.4, g(G) -- 2f~(n) + f~(q~ - 1). Suppose, on 

the contrary, that 

n(n  - 1) 
2~(n) + ~(qn _ 1) + 1 > n -  1 + f~(q) ~ + n l o g 2 ( q -  1). 

Then 

(s) 

But 

~(qn _ 1) - nlog2( q -  1) > n -  1 +12(q) n ( n -  1) (2~(n) + ~).  
2 

nlog 2 > log 2 \ ( q f  ]~_ ] _> fl(qn _ 1) - n log2(q -  1), 
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and since g(q) = log 2 (q--~l) is strictly decreasing and q > 31 we have 1 > 

log 2 ( ~ ) .  Therefore Eq.(8) becomes 

(9) 

5n f2(q) n ( n - 1 )  (2f~(n) + ~ )  
10--0 > n -  1 +  2 

6 n(n - 1) 
> n - ~ +  ~ 21og2(n ). 

As log2(n ) < n - 1, we obtain 

f~(q) n2 105 + 50f~(q) n + 4 
(10) 0 > T - 100 5" 

If q = p then f~(q) = 1 and Eq.(10) is seen to hold only if n < 3. When  q = p2, 

Eq.(10) holds only for n < 2. 

Suppose first tha t  n = 2 and q = p. Then  ~(GL2(p)) = 2 + ~2(p-  1) + ~2(p + 1) 

and we suppose tha t  

2 + f ~ ( p - 1 ) + f ~ ( p + l ) + ~  > 2 + 2 1 o g 2 ( p - l ) .  

In part icular ,  we must  have 

(11) 1 g + (f2(p + 1) - log2( p - 1)) > (log2( p - 1) - f~(p - 1)).  

Since h(p)= log 2 (p_e~ll) = f~(p+ 1 ) -  log2( p -  1) i s  a strictly decreasing function 

(p > 31), we have h(p) < h(31) < ~ .  Thus E q . ( l l )  becomes 3 > log2( p _ 1) - 

12(p- l ) .  We saw previously tha t  l o g 2 ( p - 1 ) - ~ 2 ( p - 1  ) = log 2 (P--~21) - l o g  3 (e_~) > 

9 Therefore  5" 

> log2( p - 1) - f~(p - 1) > > 5 '  

a contradiction.  

Now suppose n = 1. If i (GL1 (q)) = f~(q-  1 )+  ~ > log2( q -  1) (for ei ther choice 

1 (since f~(p + 1) log2( p + 1)). of q) we must  have f~(p - 1) > log2( p - 1) - ~ = 

9 for Arguing as in the previous case we obtain ~ > log2( p - 1) - f~(p - 1) > 

p > 31, a contradiction.  

Finally suppose tha t  G has parabolic length. Then  

e(G) = l § e(P) = l + g(Op(P)) § g(L), 
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where L ~ GL,~(q) • GLn_~(q).  Applying induction, we obtain 

n(n - 1) 2 
g(G) < n - 1 + i2(q) ~ 5 + n log2( q - 1), 

and so g(G) + ~ < g(G) + ~ < n - 1 + t i ( q ) ~  + nlog2( q - 1), as desired. 
| 

Let p be a Mersenne prime and set 

B -- {Sp2(p), GU2(p), O3(p), Sp4(p), O+4(p), Os(p)}. 

An easy calculation yields the following: 

LEMMA 5.8: Let G C B. Then 

( p + l ~  1 
g(G) < L(G) -4- 2 log 2 \ ~ - 1 ]  <- L(G) + -~. 

LEMMA 5.9: Theorem 5.1 holds for G = Z(n,p) with p a Mersenne prime. 

Proo~ We proceed by induction on ]G[. By Lemma 5.5, we may assume that  G 

is not of split hyperbolic type. According to Proposition 5.3, we have p > 31. 

Suppose that G is of parabolic type. Let P be a maximal parabolic subgroup 

of G with g(G) = g(P) + 1. Let L be the Levi complement of P and let K and J 

be its components. By Lemma 5.2, some component of P lies in B. So if K E B, 

then necessarily J ~ GLm(q) with m k 1 and q = p or pC. Now by Lemmas 5.7 

and 5.8, 

1 and g(J) < L(J)  1 g(K) < L(K)  + ~ - 5 

and so g(P) < L(P) ,  whence as in the proof of Lemma 5.2, 

g(G) < L(P) + 1 = L(G). 

Finally suppose that  G is of split hyperbolic type. Let M be a longest subgroup 

of G of split hyperbolic type. At worst, M has two components, both in B, and 

so by Lemma 5.8, g(M) < L(M)  + 1. Examining the proof of Lemma 5.6, we see 

that we will be done if we can strengthen Fact (5) to 

(5*) logp(]G]p) > logp([E]p) + 3. 

Now (5*) is easily verified to hold whenever G is split hyperbolic and G r B, 

except when G = GU3(p). In this case, 

g(GUz(p)) = 3 + 31og2( p + 1) 
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and 

L(GU3(p)) = 1 + 3 + 2 log2( p + 1) + log2( p - 1). 

As log2( p + 1) - log2( p - 1) _< 1, we have e(GV3(p)) _< L(GU3(p)), completing 

the proof of Lemma 5.9. | 

Combining Lemmas 5.6 and 5.9, we have completed the proof of Theorem 5.1. 

We note one further upper bound for [(G). 

THEOREM 5.10: Let G = Z(n, q) be a classical matrix group with minimal field 

of definition Fq where q =pm with p > 31. Suppose further that G ~ SO+(q) 

and G is a split BN-pair of rank r(G) with B = UH, U C Sylp(G) and H a 

Cartan subgroup of G. Then there exists a maximal torus T of G with 

r(G) + logp(lGlp) + ~2(Inl) ~ g(a) ~ r(a) + logp(lalp) + ~([TI). 

Proos We proceed by induction on Ial. If G is non-split hyperbolic, the result 

follows easily from Proposition 4.2. Let M be a longest subgroup of G of either 

parabolic or split hyperbolic type. By induction, there is a maximal torus To of 

M with 

e(M) < r(M) + logp(IMlp ) + f~(IT01). 

Let T be a maximal torus of G containing To. Clearly ~(IT01) _< ~(ITI) and 

r(M)  < r(G); so 

g(G) = g(M) + 1 <_ (r(M) + 1) + logp(IMIp ) + ~2(IT01) 

< r(G) + logp(IGIp) + ~(ITI), 

as desired. | 

6. Concluding remarks 

We conclude with a brief discussion of longest chains from a slightly different 

perspective. As is clear from the statement of Theorem 5.10, the length of a 

classical linear group G in odd characteristic p _> 31 is intimately connected with 

the numbers f~(ITI) as T ranges over the maximal tori of G. What  is not so 

evident is that,  in fact, the length is determined by a struggle between f2(IT[) 

and ~p,T(JGI). Here we let LIp(T) denote the set of all T-invariant p-subgroups 

of G and f~p,T(IGI) denote the maximum value of JX I for X E LIp(T). As T 
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varies, the maximum value of flp,T([G[) is tip([G[) which is achieved uniquely 

when T = H is the Car tan subgroup of G. 

An easy corollary of Theorem 1.1 is 

PROPOSITION 6.1: Let G be a finite quasisimple classical linear group. Then 

there exists a longest maximal subgroup M of  G which is an overgroup of  some 

maximal torus T of  G. 

By Theorem A of [25], for all sufficiently large fields of characteristic p, the 

length of G is 

~p(lG[) + rank(G) + f~([H[) 

and M may be chosen to be any maximal parabolic subgroup of G. Moreover, 

by Theorem 4.4, for fixed p and all but finitely many G, M may be chosen to 

be some maximal parabolic subgroup of G. On the other hand, it follows easily 

from Corollary 1.3 of [29] that  

PROPOSITION 6.2: Given a classical linear group scheme G and a maximal 

toral scheme T, there exists a prime p and a finite field K of characteristic p such 

that a longest maximal subgroup M of  G(K) must  be chosen from among the 

overgroups of  T(K). 

The list of maximal  subgroups in Theorem 1.1 is essentially minimal subject 

to containing overgroups of every maximal torus of G(K). Thus by Proposition 

6.2, the list in Theorem 1.1 is in some sense as short as possible. 

If one wishes to write down "universal" length formulas for finite quasi- 

simple classical linear groups, one must proceed as follows: 

Definition 6.3: Let G = G(p m) be a finite quasisimple classical linear group of 

parabolic length. The parabolic subgroup P of G is called a p a r a b o l i c  r o o t  of ~ 

G if there is a chain C of G with 

(1) C: G = P0 > P1 > "'" > P~ = P > "'" > {e} = Pt(a) and Pi is a parabolic 

subgroup of G for 0 < i < r; and 

(2) If L = 0 v' (P lOp(P))  = L1 * . . .  * L~, then each Lj has hyperbolic length. 

(Note: We wish to allow the possibility,that P = B, in which case L = {e} and 

(2) is satisfied vacuously.) 

It  is easy to see that  we have 
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PROPOSITION 6.4: Let G = G(p m) be a finite quasisimple classical linear group 

of  parabolic length. Then G has a parabolic root P and 

g(G) = (rank(G) - rank(P))  + f~p(Iop(P)l) + e (P /Op(P) ) .  

Thus the length problem is reduced to the hyperbolic case. 

Definition 6.5: Let G = G(p m) be a finite quasisimple classical linear group 

of hyperbolic length. The "reductive" subgroup R of G is called a h y p e r b o l i c  

r o o t  of G if there is a chain C of G with 

(1) C: G -- R0 > R1 > - ' .  > R~ -- R > . . .  > {e} = Re(a) and Ri is the 

stabilizer of an admissible orthogonal decomposition of V for 0 < i < r; 

and 

(2) If L = 0 p'(R) = L1 * ".. * L~ with V = V1 • . . .  _l_ V~ stabilized by R, 

Lilv~ = idvj for i # j ,  and each L~ is either of non-split hyperbolic type or 

of type (S)L2(3). 

Again, we have 

PROPOSITION 6.6: Let G = G(p m) be a finite quasisimple classical//near group 

of  hyperbolic length. Then G has a hyperbolic root R. 

Now the length of each Li is determined by the formula in Proposition 4.2 (or 

ad hoe for the exceptional (S)L2(p) cases) and so e(R) is determined and we have 

g(G) = v(nl ,  . . . , ns) + e(R) 

where ni = dim(V/) (with V/as  in (2) )  and v ( n l , . . . ,  ns) is the "combinatorial" 

function defined as follows: 

Definition 6.7: Let G(nl  . . . .  , n~) be a game whose initial position is the multi- 

set {n 1 , . . . ,  n~} of positive integers. A move consists of adding two of the integers 

to produce a new multi-set of size s - 1. The game continues until one reaches 

the set {n} = {nl + . . .  + ns}. The value of a move is 1 if the two mlmbers added 

are unequal and 2 if they are equal. The value 

v a ( n l , . . . ,  n ,)  

of the game G ( n l , . . . ,  ns) is the sum of the values of its moves and the function 

v is defined as 

v ( n l , . . . ,  ns) = m a x { v a ( n l , . . . ,  n,)}. 
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Clearly the game G ( n l , . . . ,  ns) has s - 1 moves and so trivially 

s - l ~ V ( n l  . . . .  ,us) ~_ 2(s - 1 ) .  

It appears likely that  even deciding if v ( n l , . . . ,  ns) >_ s is an NP-complete prob- 

lem. 

Thus the "general formula" for the length of a classical linear group entails 

difficulties of both an arithmetical nature (factorization of "cyclotomic integers") 

and a combinatorial nature (the value of v ( n l , . . . ,  n~)). In any particular case, 

the determination of the length of a given classical group G = G(p TM) must either 

proceed recursively via groups of smaller rank or must entail the determination of 

~([T[) for all maximal tori T of G and the identification of a suitable parabolic or 

hyperbolic root containing T. For small primes p, this task may be expedited by 

some elementary properties of the function ft(p n - 1), in particular Zsigmondy's 

Theorem. This is illustrated by work of the first author in [5]. However, the 

computational demands become infinitely unpleasant as p approaches infinity. 

References 

[1] M. Aschbacher, On the maximal subgroups of the finite classical groups, Inven- 
tiones mathematicae 76 (1984), 469-514. 

[2] D. Brozovic, A reduction theorem for the chain length of an odd characteristic Lie 

type group, Journal of Algebra 163 (1994), 739-756. 

[3] D. Brozovic, Almost simple p-obstructions in odd characteristic Lie type groups, 

Communications in Algebra 22 (1994), 1219-1227. 

[4] D. Brozovic, Groups of hyperbolic length in odd characteristic groups of Lie type, 

Journal of Algebra 164 (1994), 210-243. 

[5] D. Brozovic, The length of chains in odd characteristic Lie type groups, Journal 

of Algebra 170 (1994), 440-469. 

[6] D. Brozovic, Subgroup chains in finite groups, in Group Theory: Proceedings of 

the Biennial Ohio State-Denison Conference (S. Sehgal and R. Solomon, eds.), 

World Scientific, Singapore, 1993, pp. 70-81. 

[7] P. Cameron, R. Solomon and A. Turull, Chains of subgroups in symmetric groups, 

Journal of Algebra 127 (1989), 340-352. 

[8] A. M. Cohen, M. Liebeck, J. Saxl and G. M. Seitz, The local maximal subgroups 

of the exceptional groups of Lie type, Proceedings of the London Mathematical 

Society 64 (1992), 21-48. 



98 GROUPS OF HYPERBOLIC LENGTH Isr. J. Math. 

[9] C. Curtis and I. Reiner, Methods of Representation Theory, with Applications to 

Finite Groups and Orders, Volume I, Wiley, London, 1981, 1990. 

[10] P. Gilkey and G. M. Seitz, Some representations of exceptional Lie algebras, 

Geometriae Dedicata 25 (1988), 407-416. 

[11] P. B. Kleidman, The maximal subgroups of the Chevalley groups G2(q) with q 

odd, the Ree groups 2G2(q), and their automorphism groups, Journal of Algebra 

117 (1988), 30-71. 

[12] P. B. Kleidman, The maximal subgroups of the Steinberg triality groups 3D4(q) 

and of their automorphism groups, Journal of Algebra 115 (1988), 182-199. 

[13] P. B. Kleidman, The maximal subgroups of the finite 8-dimensional orthogonal 

groups PD+ (q) and of their automorphism groups, Journal of Algebra 110 (1987), 

173-242. 

[14] P. B. Kleidman, The maxima/subgroups  of the low-dimensional linear groups, 

Ph.D. Thesis, University of Cambridge, 1987. 

[15] P. B. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical 

Groups, Cambridge University Press, Cambridge, 1990. 

[16] M. Liebeck, J. Saxl and G. M. Seitz, Subgroups of maximal rank in finite excep- 

tional groups of Lie type, Proceedings of the London Mathematical Society 65 

(1992), 297-335. 

[17] M. Liebeck and G. M. Seitz, Maximal subgroups of exceptional groups of Lie type, 

finite and algebraic, Geometriae Dedicata 35 (1990), 353-387. 

[18] M. Liebeck and G. M. Seitz, Finite subgroups of exceptional algebraic groups, 

preprint. 

[19] R. Lyons, Generation of finite Chevalley groups of odd characteristic, Communi- 

cations in Algebra 18 (1990), 1433-1444. 

[20] G. M. Seitz, Representations and maxima/subgroups of finite groups of Lie type, 

Geometriae Dedicata 25 (1988), 391-406. 

[21] G. M. Seitz, On the subgroup structure of classical groups, Communications in 

Algebra 10 (1982), 875-885. 

[22] G. M. Seitz, Maximal subgroups of exceptional algebraic groups, Memoirs of the 

American Mathematical Society 441 (1991), 1-197. 

[23] G. M. Seitz and D. Testerman, Extending morphisms from finite to algebraic 

groups, Journal of Algebra 131 (1990), 559-574. 

[24] R. Solomon and A. Turull, Chains of subgroups in groups of Lie type I, Journal 

of Algebra 132 (1990), 174-184. 



Vol. 98, 1997 D.P. BROZOVIC AND R. M. SOLOMON 99 

[25] R. Solomon and A. Turull, Chains of subgroups in groups of Lie type III, Journal 

of the London Mathematical Society 44 (1991), 437-444. 

[26] R. Steinberg, Representations of algebraic groups, Nagoya Mathematical Journal 

22 (1963), 33-56. 

[27] D. Testerman, Irreducible subgroups of exceptional algebraic groups, Memoirs of 

the American Mathematical Society 390 (1988), 1-190. 

[28] A. Turull, Fixed point free actions with regular orbits, Journal f/ir die reine und 

angewandte Mathematik 371 (1986), 67-91. 

[29] A. Turull and A. Zame, Number of prime divisors and subgroup chains, Archiv 

der Mathematik 55 (1990), 333-341. 


